

Tracking and Vertexing and the impact on detector design part 2

XXXIV International School "Francesco Romano"

September 23, 2023

Jochen Klein (CERN)

Recap and outlook today

• Recap

- tracking and vertexing → track finding and fitting from hits along particle trajectory, often in magnetic field to extract curvature and, thus, momentum
- performance determined by
- position resolution, multiple scattering, magnetic field, lever arm • scalings with momentum and pseudo-rapidity

• Today

- particle identification and combination with tracking detectors • detector design, using LHC upgrade projects as examples

Integration of other detectors with tracking particle identification and more

Particle identification

- Idea: extract mass from combination of momentum and
 - specific energy loss
 - time of flight
 - Cherenkov radiation
 - transition radiation
 - electromagnetic showering
 - hadron absorption

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

Combination of techniques to achieve PID goals

Bethe-Bloch equation

- Calculation of specific energy loss by Bethe and Bloch
 - T_{max}: max. energy transfer (in single collision)
 - I: ionisation potential ($\sim(10 \pm 1)$) Z eV for elements beyond O)
 - $\delta/2$: density correction (Lorentz contraction + polarisability of material)

[H. Bethe, Ann. d. Physik 5 (1930) 325; F. Bloch, Ann. d. Physik 16 (1933) 285] 44

- Deposited energy in any detector is function of $\beta \gamma = p/m$
 - for given momentum \rightarrow function of mass
 - ambiguities at line crossings
- Requires **combined measurement** of
 - curvature \rightarrow momentum
 - deposited energy \rightarrow dE/dx
- Well suited for integration in tracker with readout of deposited energy

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

Specific energy loss

ALICE TPC

• Velocity of particle (at given momentum) depends on mass → different time of flight for different mass hypotheses:

$$\Delta t = \frac{L}{c} \left(\frac{1}{\beta_1} - \frac{1}{\beta_2} \right) \approx \frac{Lc}{2p^2} (m_1^2 - m_2^2)$$

• Separation power $N_{\sigma} = \frac{|m_1^2 - m_2^2|L}{2p^2\sigma_t c}$

improves with

- path length
- time resolution \rightarrow need for fast detectors, e.g. scintillators, Cherenkov, MRPCs, LGADs
- momentum resolution
- Often realised as **combination of fast detector outside of tracker** \rightarrow no impact on tracking performance, large path length

Time of flight

ALI-PERF-106336

4d tracking

- Time information can be used as additional coordinate in track finding and fitting
 - reduce mismatch probability in high occupancy environment, e.g. from pile-up, i.e. multiple collisions in short sequence
 - required time resolution depends on nature of pile-up
 - Integration of time measurement in
 - every tracking layer
 - \rightarrow so far only feasible with moderate time resolution (material)
 - dedicated timing layers → reduce tracks to be considered for each collision

Cherenkov detectors

• Cherenkov effect

- → emission of light by particles above speed of light
- presence of radiation → threshold Cherenkov
- emission angle function of $\beta = p/E$ \rightarrow combination of β and p give access to mass

• Measurement of Cherenkov angle requires

- sufficient production of light → minimum amount of material
- focusing onto (single-)photon-sensitive sensors → expansion gap or optics
- Typically realised as additional detector outside of tracker (need for space and material)

- Detection of total energy based on complete conversion into secondary particles
 - ECal: pair production and bremsstrahlung
 - HCal: nuclear reactions producing pions, ...
- Calorimeters are destructive detectors \rightarrow placed outside of trackers
- Propagation of (charged particle) tracks to calorimeters can be required for additional information, e.g. avoidance of double counting

Muon identification

• Exploit unique signature of muons

- energy loss through ionisation/excitation (minimum ionising particle, Bethe Bloch)
- no electromagnetic shower (too heavy)
- no hadronic shower (no strong interaction)
- Absorber can be used to block anything but muons → outermost part of a detector
- Tracking can be needed for
 - matching to tracks before absorber
 - propagation of tracks through absorber

Detector design and layout LHC upgrades used as examples

NB: in reality always an iterative process with performance studies and detector optimisations

Some (unpleasant) realities

- Better position resolution, i.e. higher granularity, and better time resolution require more power
 - more material for feeding power and for cooling (!)
 → increase in multiple scattering deteriorates performance
- Instrumented area costs money
 - optimisation of coverage with minimal instrumented area, e.g. larger magnetic field
- Magnet cost scales with stored energy (to first order) $\rightarrow \propto B^2 \cdot V$
- Radiation damage
 - particle flux scales with R² (neglecting secondary particles)
 - usage of sensors limited by radiation tolerance
 → not all technologies can be used everywhere

LHC ι

Jpg	rades		
<mark>O, OO,</mark> Pb-Pb	pp, pPb, Pb-Pb	pp, pA?, AA	pp, pA?, AA
Run 3 2 - 2025	Run 4 2029 - 2032	Run 5 2035	Run 6
minosity	HL-LHC	Higher luminosities f	F <mark>or ions</mark>
FLAS upgrades	ATLAS phase II upgrades		
grades	CMS phase II upgrades		
HCb ade I(a)	LHCb upgrade Ib	LHCb upgrade II	
ICE 2 grade	ALICE 2.1 upgrade	ALICE 3 upgrade	
nase II (b) nore deta) upgrades al on ALICE)		
		intermediate u	pgrade major up

ALICE online-offline processing

- Zero suppression and event building in First Level Processors
- Synchronous reconstruction in Event Processing Nodes
 - 2000 GPUs in 250 EPNs
- Asynchronous reconstruction on EPNs and WLCG (improved calibration)

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

Detector, e.g. RU

Common Readout Unit

Event Processing Nodes

First Level Processors

Events from continuous read-out

ALICE 3 requirements

- (Multi-)heavy-flavoured probes
 - method modified parton shower
 - transport properties
 - hadronisation

• Dielectrons down to low mass

- temperature and early stagechiral symmetry restoration
- Correlations and fluctuations
 net-baryon fluctuations
 transport properties

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

Background from heavy-flavour decays $c\bar{c} \rightarrow D\bar{D} \rightarrow e^+ e^- \dots$

Experimental requirements

- Excellent pointing resolution
- Tracking down to $p_T \approx 0$
- Excellent particle identification
- Large acceptance
- High rates for large data samples

ALICE 3

• Novel and innovative detector concept

- compact, lightweight all-silicon tracker
- retractable vertex detector
- extensive particle identification
- large acceptance
- superconducting magnet system
- continuous read-out and processing
- Further detectors
 - Muon identifier
 - Electromagnetic calorimeter
 - Forward Conversion tracker

ALICE 3 vertex detector

- **3 retractable layers inside beam pipe** at radii of 5 - 25 mm (in secondary vacuum)
 - complex mechanics and LHC interface
 - conceptual study of IRIS tracker
- Bent monolithic active pixel sensors (pioneered with ITS3 R&D)
 - 0.1 % X_0 per layer \rightarrow very thin sensors
 - σ_{pos} ~2.5 μm

Ultimate pointing resolution at the LHC

Silicon pixel R&D

- Established TPSCo 65 nm process for pixel sensors (extensive R&D run with 55 different prototypes)
 - excellent performance, also after irradiation
- Established bending of silicon sensors
 - performance of ALPIDEs not affected at radii down to 1.8 cm
 - prototypes with wafer-scale silicon
- Developing wafer-scale sensors
 - stitching of repeated sensor unit
 - first wafers from engineering run received

Part of ITS3 R&D \rightarrow D. Bortoletto

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

APTS

DPTS

ALICE 3 tracker

_	
	-
	-
	-
	_
	_
	_
	-
	-
	_
	_
	_
	_
	-
	-
	_
	_
	_
	_
	_
	-
	_
	_

ALICE 3 - TOF and RICH

- Time-of-flight detector → thin layers integrated with tracker
 - 2 barrel + 1 forward layers: $R \approx 85$ cm, $R \approx 19$ cm, $z \approx 405$ cm
 - monolithic timing sensors with $\sigma_{TOF} \approx 20 \text{ ps}$ (CMOS with gain)
- Ring Imaging Cherenkov Detector → outside of time-of-flight detector
 - aerogel radiator
 - \rightarrow refractive index n = 1.03 (barrel)
 - \rightarrow refractive index n = 1.006 (forward)
 - silicon photon sensors (monolithic SiPMs)

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

З

Probes and detector

- Heavy-flavour hadrons (p_T → 0, wide η range)
 w vertexing, tracking, hadron ID
- Dileptons (p_T ~0.1 3 GeV/c, M_{ee} ~0.1 4 GeV/c²)
 w vertexing, tracking, lepton ID
- Photons (100 MeV/c 50 GeV/c, wide η range)
 electromagnetic calorimetry
- Quarkonia and Exotica $(p_T \rightarrow 0)$

• Jets

- tracking and calorimetry, hadron ID
- Ultrasoft photons (p_T = 1 50 MeV/c)

 → dedicated forward detector
- Nuclei

• identification of z > 1 particles

ALICE 3 overview

LHCb VELO

- Retractable detector close to interaction point \rightarrow active R&D on sensors
 - addition of precision timing (tens of ps)
 - excellent position resolution (< 10 µm)
 - radiation hard $(6 \cdot 10^{16} \text{ n}_{eq}/\text{cm}^2)$
- 4d tracking to exploit precision timing → upgrade I performance despite high luminosity

track density with ~40 interactions

LHCb mighty tracker

- Forward tracking with dipole field $\int B \, dl = 4 \, \text{Tm}$
- Monolithic Active Pixel Sensors (inner region)
 - low-cost, commercial process
 - pixel size to be optimised (100x300, 50x150 μ m²)
 - up to $3 \cdot 10^{15} n_{eq}/cm^2$
- Scintillating fibres (outer region)
 - radiation-hard fibres
 - micro-lens enhanced SiPMs
 - 250 μ m diameter \rightarrow ~100 μ m resolution

ATLAS phase II upgrades

LAr calorimeter

• Segmented super-cells: shower-shape discrimination at trigger level

Trigger and DAQ

- L1 and HLT improvements
- Further upgrades

High-granularity timing detector

- Based on LGADs
- treatment of pile-up
- PID with $\sigma_{TOF} \approx 35$ ps
- Baseline trigger for HI

Muon system

- New Small Wheels installed \rightarrow sTGC + MicroMegas
- New muon chambers

 \Rightarrow Extend tracker acceptance to $|\eta| < 4$ \rightarrow Time-of-flight PID 2.5 < $|\eta| < 4$ **Endcap** calorimeters with higher granularity

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

Electronics upgrades

Luminosity detectors

HL-ZDC

- JZCaP (jointly with CMS)
- adapt to new optics
- increase radiation hardness
- Reaction plane detector

New Inner Tracker (ITk)

- hybrid silicon pixel and strip sensors
- coverage up to $|\eta| < 4$

Endcap calorimeters

- higher granularity

- 2 T solenoidal magnet
- Large coverage up to $|\eta| = 4$
 - barrel for central part
 - inclined layers in intermediate region
 - endcaps in forward region
- Combination of technologies
 - hybrid Si pixel sensors for inner layers: 1.4 Gp, A \approx 13 m², r₀ \approx 34 mm, ~0.7 X₀, 25x100 / 50 x 50 µm²
 - Si strip detectors for outer layers: $A \approx 165 \text{ m}^2$, ~0.6 X₀, p $\approx 70 \text{ }\mu\text{m}$

ATLAS ITK

• Good efficiency over full η range

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

ATLAS ITk performance

• p_T resolution increases towards larger η as expected from material

ATLAS High Granularity Timing Detector

- Precision time reconstruction (30 ps) using Low-Gain Avalanche Detectors (LGAD)
- Time slicing to maintain primary vertex reconstruction performance as now despite higher luminosity
- Measurement of bunch-by-bunch luminosity

MIP timing detector

- barrel: LYSO + SiPMs
- endcaps: LGADs
- $\sigma_{\text{TOF}} \approx 30 \text{ ps}$

Tracker

• inner: hybrid silicon pixels • outer: hybrid silicon pixels + strips

HCal

• HPD \rightarrow SiPMs

L1 trigger, HLT, DAQ

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

Luminosity detectors

 \rightarrow Charged particle tracking up to $|\eta| < 4$, muons up to $|\eta| < 3$ \rightarrow Time-of-flight PID up to $|\eta| < 3$ High-precision vertexing **Wide coverage calorimetry**

CMS phase II upgrades

New readout for muon system

HL-ZDC

- JZCaP (jointly with CMS)
- adapt to new optics
- increase radiation hardness
- Reaction plane detector

Endcap calorimeter High-granular ECal + HCal \rightarrow 4d showers ($\sigma_t \approx 20$ ps)

Forward muon system

• All GEM chambers • new frontend electronics for CSC endcaps

- 3.8 T magnet
- Large coverage up to $|\eta| = 4$
 - barrel for central part
 - inclined layers in intermediate region
 - endcaps in forward region

• **Combination of technologies** ($A \approx 200 \text{ m}^2$)

- Si pixel layers for inner layers: 1.4 Gp, p = 100 μ m, r₀ \approx 29 mm
- Si strip detectors for outer layers (pixel-strip and strip-strip modules)

CMS tracker

https://cds.cern.ch/record/2703569/plots

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

CMS tracker performance

CMS mip timing detector

• **Barrel Timing Layers**

- LYSO crystals with SiPM readout
- Endcap Timing Layers
 - Low-Gain Avalanche Diodes (LGADs)
- Use for **pile-up rejection** and **particle identification**

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

- Tracking and vertex crucial for modern experiments
 - concepts well established
 - pushing the limits
- Detector technologies achieve unprecedented precision • very active R&D on low power, low material, high resolution sensors
- High rates and large number of channels pose **computational challenges** • usage of new methods and technologies, e.g. GPUs, FPGAs

Backup

Energy loss of charged particles

- Average energy loss from integration over relevant range of b (avoiding divergence)
 - b_{min}: localisation limited by uncerta
- Integration yields $-\frac{\mathrm{d}\tilde{E}}{\mathrm{d}x} = \frac{4\pi z^2 e^4}{m_{\rm e}c^2\beta^2} n \ln \frac{m_{\rm e}c^2\beta^2\gamma^2}{\hbar\langle v\rangle} \text{ with } n$

ainty:
$$\frac{h}{p} = \frac{h}{\gamma m_e v}$$

• b_{max} : interaction time limited by revolution period of electrons: $t_{\text{int}} < T_{\text{e}}$

$$n = \frac{N_A \rho Z}{A}$$

 $\beta = p/E, \gamma = E/m \Rightarrow \beta \gamma = p/m$

Wafer-scale sensors

- First engineering run with stitched digital pixels submitted
 - sensor unit repeated along a stripe (stitching), readout circuitry in the endcaps
 - processed wafers expected back mid 2023 (final milestone for TDR)

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

digital pixels submitted be (stitching),

Endcap R wafer Pads (ø=300 mm) Pads N ~ 10 → 1.5 mm Pads

