

Tracking and Vertexing and the impact on detector design part 1

XXXIV International School "Francesco Romano"

September 22, 2023

Jochen Klein (CERN)

Outline

• **Design criteria** for particle physics experiments

- momentum/energy reconstruction
- tracking
- particle identification
- occupancy and rate
- Tracking
 - concepts and techniques
 - implications on detector design

- Vertexing
 - concepts and techniques
 - implications on detector design
- Particle identification
 - available methods
 - integration in experiments
- Detector design and layout
 - strategies
 - LHC upgrades as examples

Experimental needs

- Experiments rely on sufficiently precise measurements of properties of some or almost all particles in a reaction, typically
 - momentum
 - energy
 - pointing towards primary vertex
 - mass \rightarrow species
- Priorities depend on physics objectives → optimisation of detector various for different experiments

LHC experiments as examples

ATLAS/CMS

• **Physics priorities**

- Higgs measurements
- BSM searches
- Analysis needs
 - precise reconstruction of high-p_T probes and photons
 - sample large luminosities
 - identification of relevant signatures
- **Detector focus**
 - tracking and calorimetry
 - rate capability

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

CMS

LHCb

• Physics priorities

- CP violation
- rare decays in b physics

• Analysis needs

- precise tracking
- reconstruction of secondary vertices
- particle identification
- Detector focus
 - vertexing
 - particle identification
 - forward coverage

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

LHCb

• **Physics priorities**

- physics of the quark-gluon plasma
- study of strong interaction

• Analysis needs

- measurement and identification of all particles (incl. yields)
- complete reconstruction of events

• **Detector focus**

- tracking down to low transverse momenta
- vertexing
- particle identification

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

ALICE

ALICE

Relevant detector concepts

- Tracking and vertexing from hits along particle trajectories (in magnetic field)
- Particle identification from a variety of general-purpose or specific techniques
 - specific energy loss
 - time-of-flight
 - calorimetry
 - muon systems
- Energy measurement (destructive) from electromagnetic and hadronic calorimetry

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

← outside of trackers

← impacts design

Tracking

reconstruction of particle motion, typically in magnetic fields

Motion of charged particles

• Motion of charged particle in a magnetic field determined by **Lorentz force**

$$\overrightarrow{F} = q\left(\overrightarrow{v} \times \overrightarrow{B}\right) \implies \dot{\overrightarrow{v}} = \frac{q}{\gamma m} \left(\overrightarrow{v} \times \overrightarrow{B}\right)$$

- force perpendicular to direction of motion
 in magnetic field only change of direction
 no change of energy → γ constant
- valid even relativistically (despite non-covariant formulation)

 \overrightarrow{B}

9

Helix motion in homogeneous field

• Charged particle in homogeneous magnetic field → helix motion coaxial with magnetic field (in z direction)

$$x = \frac{v_{\rm T}}{\eta \omega_B} \sin(\eta \omega_B t + \psi_0) + x_0 \qquad y = \frac{v_{\rm T}}{\eta \omega_B} \cos(\eta \omega_B t + \psi_0) + y_0 \qquad z = v_3 t + z_0$$

with cyclotron frequency $\omega_B = \frac{|q|B}{\gamma m}$ and $\eta = q/|q|$
• radius of curvature given by $p_{\perp} = |q|BR$,
when using standard units (GeV/c, T, m) $\Rightarrow p_{\perp} = 0.3BR$

curvature in magnetic field directly linked to (transverse) momentum

Magnetic field configurations

- **Dipole** fields
 - often used in fixed-target experiments or forward part of collider experiments
- **Solenoidal** fields
 - often used in collider experiments (rotationally symmetric)
- **Toroidal** fields

• often used as extension of solenoidal fields (perpendicular, rotationally symmetric)

> **Deflection depends on motion** perpendicular to magnetic fields

11

Tracking

- **Reconstruction of trajectory** of a particle through the detector with the goal of determining properties of the particle, in particular momentum
 - connection of hits in one or more detectors (originating from the same particle) track finding
 - fitting of track parameters from hits (taking into account interaction with material and magnetic fields) → track fitting

• **Requirements for tracking detectors**

- 3 space points fully describe trajectory (under ideal conditions)
- additional measurements can reduce uncertainties
- need for redundancy and suppression of fake tracks (occupancy)

Trajectory through cylindrical layers

Evolution of experiments

- Scintillating screens → counting experiments
- Emulsions and cloud/bubble chambers → imaging experiments
- Modern experiments → electronic readout and computer-based reconstruction of trajectories

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

Rutherford experiment (1909)

ALEPH @ LEP (1982 - 2000)

Discovery of positron in cloud chamber (1932)

Criteria for tracking performance

- Ideal reconstruction
 - assignment of all hits to correct track
 → all tracks are reconstructed, no impact from wrongly assigned hits
 - precise estimation of track parameters
 → unbiased, minimal uncertainties
- Figures of merit
 - acceptance → fraction of area covered by detector
 - efficiency → fraction of reconstructed tracks
 - fake hit probability → probability of assigning hits from other particles
 - extrapolation uncertainties → propagation beyond volume covered by tracker
 - momentum resolution

14

- Momentum measurements boils down to measurement of curvature in magnetic field → extraction from bubble chamber images
- Sagitta → maximum deviation from line between endpoints of track segment $s = R - R\cos\frac{\vartheta}{2} = 2R\sin^2\frac{\vartheta}{4} \approx \frac{R\vartheta^2}{8} \approx \frac{\tilde{L}^2}{8R} = \frac{qBL^2}{8p_{\perp}}$
 - quadratic dependence on lever arm
 - relative uncertainty of momentum proportional to relative uncertainty of sagitta

Sagitta

next consider measurement of points along trajectory

- Measurement of hit position limited by detector resolution
 - uncertainty for rectangular structure with **binary readout pitch p**

$$\sigma_{\text{pos}}^2 = \int_{-p/2}^{p/2} \mathrm{d}x \, x^2 \frac{1}{p} = \frac{p^2}{12} \Rightarrow \sigma_{\text{pos}} = \frac{p^2}{12}$$

- uncertainty reduced when signal spreads across multiple bins (charge sharing), possibly with information on charge per bin
- gas detectors typically $O(100 \ \mu m)$, semiconductor detectors typically $O(10 \ \mu m)$

Position resolution

Multiple scattering

- Material (incl. sensitive volume!) leads to multiple scattering → random change of direction on top of curvature in magnetic field
 - width of distribution
 - $\sigma_{\alpha} = \frac{0.0136 \,\text{GeV/c}}{\beta p} \sqrt{\frac{d}{X_0}}$
 - inversely proportional to momentum
 - scales with square root of material thickness
- Multiple scattering poses fundamental limit on measurement precision → cannot be mitigated by improved position resolution
 - angular effect, i.e. $\sigma_x \propto \sigma_\alpha \cdot \Delta x$

Track fit

- Global x^2 minimisation of parameterised function f(x) for measured points (x_i, y_i) • assume linear dependency on parameters, e.g.
 - straight line

$$\rightarrow y_i = f(x_i) = a_0 + a_1 x_i$$

- parabola (as approximation to circular shape) \rightarrow y_i = f(x_i) = a₀ + a₁ x_i + a₂ x_{i²/2} (a₂ = 1/R)
- find parameters a to minimise $\chi^2 = (y - Ga)^T W(y - Ga)$ with $G := x_i^j$ and weights W (W is identity matrix for equal weights)
- minimum achieved for solution of normal equation $G^T W G a = G^T W v$
 - solvable by matrix inversion or as system of linear equations (numerically more stable)

Tracking uncertainties

- Uncertainties of measurements described by **covariance matrix** $C_y = E((y - Ey)(y - Ey)^T)$
- **Propagation of uncertainties** to parameters a $C_a = BC_y B^T$ with $B = (G^T W G)^{-1} G^T W$ (from previous slide)
- Optimal choice of W to achieve unbiased parameter estimation with minimal uncertainties $W = C_y^{-1}$
- Uncertainties for ideal weights are $C_a = (G^T C_y^{-1} G)^{-1}$

Momentum resolution

• Transverse momentum extracted from curvature in magnetic field: $p_{\perp} = |q| BR$

• approximated circle by parabola $f(x_i) = a_0 + a_1 x_i + a_2 x_i^2/2$ with $a_2 = 1/R$

• momentum resolution proportional to uncertainty of curvature: $\longrightarrow \frac{\Delta p_{\mathrm{T}}}{p_{\mathrm{T}}} = \frac{\Delta R}{R} = \frac{\Delta a_{2}}{a_{2}} = \frac{p_{\mathrm{T}}}{|q|B} \Delta a_{2}$

• Position resolution of N+1 equidistant layers lea

(Glückstern formula, NIM 24 (1963) 381)

• Multiple scattering in N+1 equidistant layers lea $\Delta p_{\rm T}$ N $p\sigma_{\alpha}\sqrt{N+1}$ $\sqrt{(N+1)(N-1)} \qquad BL$ p_{T}

ads to uncertainty

$$\frac{\sigma p_{\rm T}}{-3} \approx \frac{\sigma p_{\rm T}}{|q|BL^2} \sqrt{\frac{720}{N+4}}$$

$$p = \frac{1}{N} \frac{p 0.0136 \text{ GeV}/c \sqrt{d_{\text{tot}}/X_0}}{\beta BL}$$

[NIM 24 (1963) 381; NIM A 910 (2018), 127-132] 20

Considerations for detector layout

- Multiple scattering contributes $d_{\rm tot}/X_0 \cosh \eta$ \mathbf{x} βBL
 - independent of momentum (for $\beta \approx 1$)
 - linear dependence on lever arm
 - scales with square root of material
- **Position resolution** contributes \propto - BL^2
 - linear rise with momentum
 - quadratic dependence on lever arm

Track finding

- So far track fit assuming knowledge of contributing hits
 → in reality need to identify hit-to-track association from data
 → task of pattern recognition
- Variety of methods available (and used), usability often determined by computational effort
 - fit all combinations (and reject based on χ²)
 - Hough transformation
 - cellular automaton
 - Kalman filter
 - machine learning

Hough transformation

- Idea: transformation from space coordinates to parameter coordinates,
 - e.g. describing a straight line y = ax + b
 - every hit (x, y) transforms into a line in the parameter space
 - parameter lines intersect in a single point (ideal case) or cluster around a value (with uncertainties)
 - accumulation point in the parameter space transforms into a line in real space

• Can be generalised to more complex parameterisations

- Connect hits from adjacent layers within a search window \rightarrow tree of connections
 - combine track segments
 - longest paths are candidates
 - select candidates based on track fit
- Advantages

 local matching of hits → contain computational effort

Cellular automaton

Figure by M. Puccio

Kalman filter

- Idea: propagate track through detector and update parameters
 → combination of track finding and fitting steps
 - Define parametrisation of track at given point together with propagator to next layer
 - propagator can take into account effects such as energy loss in material
 - Find a seed, i.e. rough track parametrisation from a single hit or track segment
 - Iterate over layers
 - propagate track to next layer
 - update parameterisation based on hit in this layer
- Algorithm can be repeated in opposite direction for refined fit and smoothing

Detector optimisation

- Impact of **number of layers** on
 - track finding
 - track fitting
- Impact of placement of layers on
 - track finding
 - track fitting
- Impact of lever arm and magnetic field on
 - momentum resolution
- Impact of **dead zone and inefficiencies** on • corrections for analysis

Momentum resolution

• Consider momentum resolution in solenoidal field

• $\propto \frac{\sqrt{d_{\text{tot}}/X_0} \cosh \eta}{\beta BL}$ for multiple scattering • $\propto \frac{\sigma p_{\text{T}}}{BL^2}$ for position resolution

• Objectives

- choose lever arm L required for momentum resolution: area (and cost) scales quadratically with L (for fixed η coverage)
- choose magnetic field: higher field improves mom. resolution, limits acceptance, increases magnet cost
- optimise **number of layers**: more layers add material, help with track finding, increase cost
- minimise **material per layer**: challenge on power consumption, cooling, mechanics

forward coverage with barrel layers

- large areas \rightarrow expensive
- deterioration of performance

Layer arrangement

• Objectives

- reduce instrumented area
- minimise path length in material (avoid shallow angles)
- **Barrel layers** well suited to cover central region (up to $\eta \approx 1.5$)
- **Disks** well suited to cover forward region (beyond $\eta \approx 1.5$)
- Inclined layers can be used for transition region

. . . .

Layer placement

- One objective among others: optimise momentum resolution
- Consider tracker with following properties fixed: lever arm, magnetic field, material thickness per layer, position resolution
 - **number of layers** has small impact on momentum resolution
 - ideal layer positions depend on dominating effects
 - multiple scattering
 - position resolution
 - track finding (pattern recognition)

Optimisation for momentum resolution gives only weak indication on ideal layer placement

Mismatch probability

• **Objective**

• minimise assignment of hits not originating from a given track

• A conceptual approach

• probability of wrong assignment scales with number of hits in vicinity

$$P \propto \frac{\Delta R^2}{R^2} \cdot x/X_0$$

here: assuming quadratic decay of particle flux

• distance from preceding layer to achieve constant probability

$$\Delta R \propto \sqrt{\frac{P}{x/X_0}} \cdot R$$

- Inefficiencies and dead areas can lead to significant deterioration of matching
 - layers often arranged in pairs to avoid lack of position information

Additional considerations

• Momentum range

- limited by particles not reaching outer layers
- limited by momentum resolution
- Propagation to other detectors
 - limited by pointing resolution towards other (outer) detectors
- Track length determination
 - limited by precision of propagation inside tracker
- Reconstruction of secondary particles
 - limited by number of hits for particles produced at a distance from the primary vertex

Vertexing

Vertices

- Reconstruction of **primary vertex**, i.e. point of underlying interaction, from emerging tracks
 - need to separate primary vertices, e.g. ~200 in a single HL-LHC bunch crossing
 - assignment of tracks to interactions
- Reconstruction of **decay vertices**
 - distinction of prompt and non-prompt particles
 - reconstruction of decay vertices and decay chains
- Need for pointing resolutions on the order of 100 µm

decays with $c\tau < 100 \ \mu m$

Track propagation

- **Track finding** like for tracking
- Track and propagation defined by straight line through 2 hits
 - magnetic field can often be neglected because of short distances
 - typically vertex detectors feature at least three layers for track finding
- Extrapolation limited by
 - position resolution
 - multiple scattering

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

decays with $c\tau < 100 \mu m$

- Impact parameter obtained from track extrapolation
 - approximation by straight line $f(x_i) = a_0 + a_1 x_i$
 - with first layer at radius r₀, uncertainty given by $\sigma_{xv} = \sigma_{a_1} \cdot \dot{r}_0$

$$\sigma_z = \sigma_{a_1} \cdot r_0 \cdot \cosh \eta$$

- Position resolution of N+1 equidistant layers leads to
 - $\sigma_{d_{xv}} \propto \sigma_{r\varphi}$ (transverse impact parameter)
 - $\sigma_{d_7} \propto \sigma_z$ (longitudinal impact parameter)

Position resolution

decays with $c\tau < 100 \mu m$

Multiple scattering

• Multiple scattering in N+1 equidistant layers leads to

• Propagation towards interaction point leads to

•
$$\sigma_{d_{xy}} \propto \sigma_{\varphi} \cdot r_0 \propto \frac{\sqrt{d/X_0 \cosh \eta}}{\beta p_{\mathrm{T}}} r_0 \text{ (transverse})$$

• $\sigma_{d_z} \propto \sigma_{\vartheta} \cdot r_0 \cdot \cosh^2 \eta \propto \frac{\sqrt{d/X_0}}{\beta p_{\mathrm{T}}} \cdot r_0 \cdot \sqrt{\beta p_{\mathrm{T}}}$

decays with $c\tau < 100 \ \mu m$

verse)

 $/\cosh\eta^3$ (longitudinal)

Detector design

• Pointing resolution scales

- with distance of closest layer
 → priority to be as close as possible
- with square root of material (m.s. ∝ 1/p)
 → minimise material
- with position resolution
 → keep sub-dominant (within range)

• More layers do not improve precision but can be needed for track finding

Wrap-up: resolution scaling

position resolution

momentum

transverse DCA

longitudinal DCA

 $\propto \sigma_{z}$

Tracking & Vertexing | Sep 2023 | jochen.klein@cern.ch

multiple scattering

 $\propto \sqrt{d_{\rm tot}/X_0} \frac{\sqrt{\cosh \eta}}{\beta BL}$ $\propto r_0 \sqrt{d/X_0} \frac{\sqrt{\cosh \eta}}{\beta p_{\rm T}}$ $\propto r_0 \sqrt{d/X_0} \frac{\sqrt{\cosh \eta}^3}{\beta p_{\rm T}}$

Summary part 1

- Tracking and vertexing based on reconstruction from hits along particle trajectory, often in magnetic field to extract curvature and, thus, momentum
- Performance determined by
 - multiple scattering \rightarrow material
 - position resolution \rightarrow detector technique and performance
 - magnetic field
 - lever arm
- Scaling with momentum and pseudo-rapidity

