

XXXIV International School "Francesco Romano"

on Nuclear, Subnuclear and Astroparticle Physics

Introduction to Ultrarelativistic Nuclear Collisions (3)

Federico Antinori (INFN, Padova, Italy)

Small systems: a new frontier

- long-range ridge on near side in high-multiplicity pp collisions at the LHC!
- very similar structure as in Pb-Pb collisions
 - \circ where it is connected with v₂

CMS: JHEP 1009:091,2010

Near- and away-side ridge in p-Pb

- evidence for collective behaviour in high-multiplicity p-Pb,
 - e.g. symmetric double-ridge when subtracting low from high mult'y p-Pb

ALICE: Phys Lett B 719 (2013) 29

v2 for identified particles in p-Pb

- clear mass ordering at high multiplicity
 - same as in Pb-Pb

- consistent with common velocity field
- \rightarrow consistent with hydrodynamic expansion!

Strangeness enhancement in pp!

ELECTRON GASES Spin and charge part ways

QUANTUM SIMULATION Hamiltonian learning

TOPOLOGICAL PHOTONICS Optical Weyl points and Fermi arcs

- one of the hallmarks of QGP
- predicted in 1982
 J Rafelski & B Müller, PRL 48 (1982) 1066
- observed at SPS in the 90's WA97, NA57, NA49
- now observed in high-mult pp!
 not reproduced by models
 - a precursor phenomenon?
 - QGP in high-mult pp???
- \rightarrow new directions for research!
 - study effects turn-on, evolution
 - new weapon: pp generators!

Hadron chemistry vs system size

- → new avenue to microscopic understanding of buildup of collectivity!
- → could help resolve muon puzzle in cosmic rays?

T Pierog et al, UHECR 2018, EPJ Web Conf

- S Baur et al, arXiv:1902.09265
- T Pierog, ESPP Symposium, Granada
- T Pierog, ICRC 2019, Madison

- strangeness enhancement vs size
 - smooth evolution vs event multiplicity
- challenge for pp event generators
 - e.g.: T Sjostrand at Quark Matter 2018

Summary and outlook

- Conventional pp generators successful, with MPI + CR generating some collectivity, but now cracks.
- Need new framework for baryon production.
- String close-packing likely to influence hadronization, before (shoving), during (ropes) and after (rescattering).
- Currently no known unique solution, so free to explore.
- \bullet Several recent & ongoing studies look promising, but much work and few active with pp generator outlook.
- Further experimental input crucial!

Whole new field of study opening up!

But no sign of quenching yet!

[ALICE: PLB 827 (2022) 136943]

How about heavy flavour in small systems?

• no sign of quenching for charm (like for everything else...)

...but flow seems to be there...!

- ... what's this??? (isn't charm produced isotropically in initial parton-parton scattering?)
 - a sign of azimuthally-dependent energy loss??? ⁽⁹⁾...
- could it just be the light quarks...?

... also for prompt J/ψ ...

CMS: PLB 791 (2019) 172

- ... no, it's not just the light quarks...
 it seems to be the c themselves...
- consistent with R_{pPb} measurements?
- these are supposed to be mostly pairproduced cc̄, propagating together... right? ^(c)...
- if v₂ is due to energy loss, does its amount carry information about octet v singlet?

... but not for beauty...

• another one of those beauty things...

... a sign of life...?

- ATLAS @ QM 2022
- multiplicity of underlying event for Υ events
- a hierarchy at low p_T...
 - ... or just an MPI bias not reproduced in PYTHIA?

By the way: nPDFs seem to be doing not too bad...

ALICE: JHEP01 (2022) 174

In-medium hadronisation, a rich sector!

charmonium

HF baryons $\Lambda_c^{+} \,/\, D^0$ 1.4 ALICE $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}, \, |y| < 0.5$.2 0-10% Pb-Pb → 30 –50% Pb–Pb 0.8 — рр 0.6 0.4 0.2 20 15 5 10 p_{τ}^{-} (GeV/c) ALI-PUB-500243

ALICE: arXiv:2112.08156

Strangeness enhancement in Pb-Pb!

0.2

ALICE: PLB 827 (2022) 136986

CMS: PLB 829 (2022) 137062

Chemical equilibrium for HF hadrons?

Already in pp, p-Pb...

HF baryon/meson enhanced wrt e⁺e⁻ (especially at low p_T)

ALICE: PRL 127 (2021) 202301

ALICE: JHEP 10 (2021) 159

Fragmentation Fractions: pp \neq e⁺e⁻

- fragmentation factorisation is violated
 already in pp
- hadronisation in hadronic environments is a different game than in e⁺e⁻

But already at the SPS... (my thesis \bigcirc !)

- WA82 (OMEGA): π^- A collisions
 - charm production in forward hemisphere
- beam valence: $d\bar{u}$ (π^-)
- excess of D⁻ ($\bar{c}d$) over D⁺ ($c\bar{d}$)
 - \circ D⁻/D⁺ = 1.34 ± 0.13
- particularly pronounced close to beam x_F
- (try and do this with Peterson's fragmentation...)
- modified PYTHIA tune:

Multiplicity evolution?

By the way: for B_s ...

LHCb: arXiv:2204.13042

ALICE results from LHC Run 1, 2: full review

arXiv:2211.04384

Where do we go from here...?

- 10-100 x expected from Run 3, 4 \rightarrow entering high-precision era!
- \rightarrow in the following: a few of my personal favourites

Low- p_T beauty!

- beauty not fully equilibrated?
 - less suppression than for charm
 - less flow than for charm
 - SHM seems to fail
- relaxation ~ 3 times slower than charm

$$\tau_Q = \left(\frac{m_Q}{T}\right) D_s \quad \text{(with } m_b \sim 3m_c\text{)}$$

- of course this does not imply that b cannot fully equilibrate...
 - given enough volume/time...
-but experimentally it looks like it doesn't...

- \rightarrow b mass just at the right spot?
 - to see equilibration on the move...?

- \rightarrow need high-precision b down to p_T=0
- \rightarrow (and watch the hadrochemistry!)

Jets as quark proxy

direct access to parton (ideally, at least...)

ALICE: SQM 2022

Jets as imaging of in-medium parton processes

LHC timeline

- during LS2:
 - LHC injector upgrades, Pb-Pb rate \rightarrow 50 kHz (now ~10 kHz)
 - major ALICE upgrades campaign (vertexing, data collection speed)
- aim for > 13/nb Pb-Pb collisions (Run 3 + Run 4)

ALICE LS2 upgrades

Main physics goals

- study heavy quark interaction in QCD medium
 - \rightarrow heavy flavour dynamics and hadronisation at low p_T
- study charmonium regeneration in QGP

 \rightarrow charmonium down to zero p_T

- chiral symmetry restoration and QGP radiation
 - \rightarrow vector mesons and virtual thermal photons (di-leptons)
- production of nuclei in QGP
 - \rightarrow high-precision measurement

ALICE

ALICE LS2 upgrades

Layout

- New Inner Tracking System (ITS)
 - MAPS: improved resolution, less material, faster readout
- New Muon Forward Tracker (MFT)
 - vertex tracker at forward rapidity
- New TPC Readout Chambers
 - − 4-GEM detectors \rightarrow continuous r/o
- New forward trigger detectors (FIT)
 - centrality, event plane
- Upgraded read-out for TOF, TRD, MUON, ZDC, EMCal, PHOS, new Online-Offline system (O²)
 - record minimum-bias Pb-Pb data at 50 kHz (currently <1 kHz)

ITS upgrade: Monolithic Active Pixel Sensors

7-layer geometry (23 – 400mm, $|\eta| \le 1.5$)10 m² active silicon area (12.5 G-pixels)Pixel pitch 28 x 28 μ m²Spatial resolution ~5 μ mPower density < 40mW / cm²</td>Material thickness: ~0.3% / layer (IB)Max particle rate: 100 MHz / cm²

TPC upgrade: GEM readout

- with current MWPC r/o rate < kHz (Pb-Pb)
 - limited by ion backflow, gating grid
- GEM: ion backflow suppressed to < 1%
- \rightarrow replace MWPC with 4-GEM stacks
- 100 m² single-mask GEM foils
- 524 000 pads
- continuous readout at 50 kHz (Pb-Pb)
- → 3.4 TB/s!

TPC at 50 kHz

- Run1, Run2: average time between collisions ~125 μ s ~ TPC drift time
 - − 1 event in TPC at any given time \rightarrow triggerable

- after upgrade: average time between collision ~ 20 µs << TPC drift time
 - 5 events in TPC at any given time \rightarrow continuous readout

Time

O² System

Requirements

- 1. LHC min bias Pb-Pb at 50 kHz
- very small signal over background
 → triggering not possible
- 3. support for continuous read-out

New computing system

- → read-out the data of all interactions
- → compress data intelligently
 → online reconstruction
- → common online-offline computing system $\rightarrow O^2$
- ➔ 2.2 MW Computer Centre on site

Run 3 is here!

- huge increase in statistics
 - Pb-Pb x 100
 - pp, p-Pb x 1000
- analysis-level event selection
 - 10⁴ compression factor

Plans for LS3, LS4

Last update: April 2023

FoCal

- FoCal-E: high-granularity Si-W sampling calorimeter
 - photons, π^0
- FoCal-H: sampling hadronic calorimeter
 - photon isolation, jets
- \rightarrow access to gluon parton distribution functions

- + other observables
- π⁰
- jets (and di-jets)
- J/ψ, Y in UPC
- W, Z
- event plane and centrality

Compton

Beyond LS4

- ongoing upgrade will bring us to maximum rate for a TPC spectrometer
 - @ 50 kHz: space-charge distortions ~ 10 cm, track density ~ 40% (inner region)
- advances in CMOS technology open new opportunities
 - vertexing, tracking, calorimetry, ...

wafer-size circuits (stitching)

flexible wafers

A new dream: ALICE 3!

a next-generation heavy-ion experiment at the LHC

- compact, "all-silicon" tracker
- wide rapidity acceptance (8 units)
- high-resolution vertex detector
 - as close as possible to beams!
- superconducting magnet system
- hadron, muon, electron identification
- electromagnetic calorimeter
- forward conversion tracker

Observables

- heavy-flavour hadrons ($p_T \rightarrow 0$, wide η range)
 - \rightarrow vertexing, tracking, hadron id
- dileptons ($p_T \sim 0.1 3 \text{ GeV/c}$, $M_{ee} \sim 0.1 4 \text{ GeV/c}^2$)
 - \rightarrow vertexing, tracking, lepton id
- photons (100 MeV/c 50 GeV/c, wide η range)
 - \rightarrow electromagnetic calorimetry
- quarkonia and exotica ($p_T \rightarrow 0$)
 - \rightarrow muon id

- jets
 - \rightarrow tracking and calorimetry, hadron id
- ultrasoft photons ($p_T \sim 1 50 \text{ MeV/c}$)
 - \rightarrow dedicated forward detector
- nuclei
 - \rightarrow identification of z > 1 particles

Detector requirements

Component	Observables	η < 1.75 (barrel)	1.75 < η < 4 (forward)	Detectors
Vertexing	Multi-charm baryons, dielectrons	Best possible DCA resolution, $\sigma_{DCA} \approx 10 \ \mu m \ at \ 200 \ MeV/c$	Best possible DCA resolution, σDCA ≈ 30 μm at 200 MeV/c	Retractable silicon pixel tracker: $\sigma_{pos} \approx 2.5 \ \mu m$, Rin $\approx 5 \ mm$, X/X ₀ $\approx 0.1 \ \%$ for first layer
Tracking	Multi-charm baryons, dielectrons	σ _P τ / pτ ~1-2 %		Silicon pixel tracker: $\sigma_{\text{pos}} \approx 10 \ \mu\text{m}, \ R_{\text{out}} \approx 80 \ \text{cm},$ X/X ₀ $\approx 1 \ \% \ / \ layer$
Hadron ID	Multi-charm baryons	π/K/p separation up to a few GeV/c		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Electron ID	Dielectrons, quarkonia, χ ₀1(3872)	pion rejection by 1000x up to ~2 - 3 GeV/c		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mrad}$ possibly preshower detector
Muon ID	Quarkonia, χ ₀1(3872)	reconstruction of J/Ψ at rest, i.e. muons from 1.5 GeV/c		steel absorber: L ≈ 70 cm muon detectors
Electromagnetic calorimetry	Photons, jets	large acceptance		Pb-Sci calorimeter
	X∘	high-resolution segment		PbWO ₄ calorimeter
Ultrasoft photon detection	Ultra-soft photons		measurement of photons in p⊤ range 1 - 50 MeV/c	Forward Conversion Tracker based on silicon pixel sensors

IRIS: inside the beam pipe

IRIS: inside the beam pipe

IRIS: inside the beam pipe

IRIS: aperture

Minimum aperture at injection: 16mm radius Closes to 5mm radius during operation

Physics potential

• some personal favourites...

$D\overline{D}$ correlations

- ~ Rutherford experiment on QGP!
- constrain energy loss and angular decorrelation simultaneously
- collisional vs radiative eloss vs momentum scale
- full isotropisation at low p_T?
- e.g.: ALICE 3 Lol

Multi-charm: the final frontier?

• <u>ultimate sensitivity to degree of c thermalisation</u>₄₇

Charmed hypernuclei?

- nuclei containing a charm baryon
 - sometimes called supernuclei
- e.g.: c-deuteron $(\Lambda_c^+ n)$, c-triton $(\Lambda_c^+ nn)$
- first suggested in the 70's
 - C B Dover and S H Kahana, PRL 39 (1977) 1506
- existence/stability debated ever since
- at SHM abundances → expected to come into view at LHC
- if full equilibration confirmed both for c and for nuclear states...
- \rightarrow discover or exclude existence!
- + direct study of Λ_c^+ -N potential via femtoscopy?

An old dream: thermal charm?

- $\gamma_c \sim 30 \rightarrow$ thermal component only $\sim 3\%$
- but that's for central Pb-Pb...
- initial production: $Y_{in}(c\bar{c}) \propto A^{4/3}$
- thermal production: $Y_{th}(c\bar{c}) \propto A$

E V Shuryak: Yadernaya Fizika 28 (1978) 403

Э. В. ШУРЯК

институт ядерной физики со ан ссср

(Поступила в редакцию 14 марта 1978 г.)

Предлагается теория явлений, связанных с массами M и поперечными импульсами p_{\perp} , такими, что 1 $\Gamma \mathfrak{se} \leqslant M$, $p_{\perp} \ll \overline{i}\mathfrak{s}$. Для их описания применяется модель локально-равновесной кварк-глюонной плазыы, разлетающейся по определенному закону. Применение кванговой хромодинамики для вычисления скоростей ряда реакций в такой плазме позволяет вычислить спектры масс дилептонов, распределение по p_{\perp} лептонов, фотонов, пионов и адронных струй, сечения рождения пар очарованных кварков и различных состояний чармония (псионов): J/ψ -, χ -, ψ '-мезонов. Результаты согласуются с экспериментальными данными.

- $\gamma_c \propto \frac{Y_{in}}{Y_{th}} \propto A^{1/3}$
- e.g. for central Ar-Ar (or ~ 60% Pb-Pb) γ_c ~ 15
- \rightarrow thermal component already 6%
 - + centrality / A dependence different from initial component
- \rightarrow can it be separated from other centrality-dependent effects with very-large stats?
- btw: already in our minds at time of ALICE TP
 - (but theory predictions were overestimated...)

An old dream: beauty shock waves?

- low momentum b quarks are slow! (e.g.: at 10 GeV $\beta \sim 0.9$)
- ightarrow angle of shock wave emitted by propagating b quark should depend on p

• taking $\overline{c_s} \sim 1/\sqrt{3} \dots 1/2$

- b subsonic for $p < \sim 3$ GeV/c
- p-dependent wake in multi-GeV range?

~ 40 ° at 5 GeV, ~ 55° at 10 GeV!

F Antinori, E V Shuryak: J.Phys. G31 (2005) L19

Physics potential (examples)

- heavy flavours, quarkonia
 - multi-heavy flavoured hadrons (Ξ_{cc} , Ω_{cc} , Ω_{ccc})
 - D D correlations
 - B mesons at low p_T
 - $-\chi_{c,X}$, Y, Z states and exotic hadrons
- low-mass dielectrons
 - chiral symmetry restoration
 - thermal continuum (virtual photons)
- fluctuations of conserved charges
 - over wide rapidity range
- ultra-soft photons
 - down to MeV scale with dedicated forward spectrometer
- nuclei, hyper-nuclei, search for super-nuclei (with c baryons)
- BSM searches
 - dark photons
 - axion-like particles

ITS3 Vertex detector (3 inner layers)

a new, ultra-light Inner Barrel in LS3

Letter of Intent https://cds.cern.ch/record/2703140

- advances in Silicon technology: ultra-thin, wafer-scale sensors
 - eliminate active cooling (for power < 20 mW/cm²)
 - eliminate electrical substrate (if sensor convers full stave length)
 - perfectly cylindrical geometry
 - (30 µm thick can be curved to 10-20 mm radius)

Conclusions

- in this brief course, we could only go through a limited choice of subjects
- I concentrated on some of the most representative ones
 - there is of course much more that we could not discuss...
- I hope you have enjoyed the lectures
 - and have learned something new!
- this is a very rich, dynamic, experiment-driven field

Conclusions

- in this brief course, we could only go through a limited choice of subjects
- I concentrated on some of the most representative ones
 - there is of course much more that we could not discuss...
- I hope you have enjoyed the lectures
 - and have learned something new!
- this is a very rich, dynamic, experiment-driven field

