High Energy Cosmic Ray and Multi-Messenger Astrophysics

BERGISCHE **Karl-Heinz Kampert** UNIVERSITÄT WUPPERTAL Bergische Universität Wuppertal

XXXIV International School "Francesco Romano"

on Nuclear, Subnuclear and Astroparticle Physics

Lecture 2: Diving into the UHECR science

Bundesministerium für Bildung und Forschung

Monopoli (Bari) - Italy 2023 Sept. 17th - 24th

Hybrid Detection of UHECR: Pierre Auger Observatory

Nucl. Instr. Meth. A798 (2015) 172

3000 km² area Argentina (Malargüe)

Central campus with visitors center

Karl-Heinz Kampert – Bergische Universität Wuppertal

- 1400 m altitude
- 35° S, 69° W
- 27 Telescopes to measure light trace of EAS in atmosphere
- integrated light intensity \rightarrow CR energy
- 13% duty cycle
- I660 Water Cherenkov detectors on 1.5 km grid to measure footprint of particles at ground
- I00% duty cycle
- cross calibrated with FD-telescopes with hybrid events
- I 53 radio antennas for em-radiated energy
- 18 km² area

56

I00% duty cycle

SAL PL

GPS

battery

Karl-Heinz K

communication ISM band (0.9 GHz)

Water Cherenkov Station ...1660 stations in total

solar panel

Three 9" PMT XP 1805

12000 ltr water

Counting detector stations

Official stamp

Light Spot as seen by Camera

24 telescopes (6 per site) 12 m² mirrors, Schmidt optics 30°x30° deg field of view 440 PMTs/camera **10 MHz FADC readout**

Karl-Heinz Kampert – Bergische Universität Wuppertal

A quadruple event

4 Telescopes + 20 km2 Footprint

Calibrating the Primary Energy

Karl-Heinz Kampert – Bergische Universität Wuppertal

absolute E-scale from light intensity

Calibrating the Primary Energy

Karl-Heinz Kampert – Bergische Universität Wuppertal

Calibrating the Primary Energy

Karl-Heinz Kampert – Bergische Universität Wuppertal

Absolute calibration of radio signal: **18 MeV energy radiated in radio signal @ 1 EeV**

The End of the CR Energy Spectrum

Auger Collaboration Phys. Rev. Lett. 125, 121106 (2020) & Phys. Rev. D 102, 062005 (2020)

Karl-Heinz Kampert – Bergische Universität Wuppertal

Is this the maximum energy of cosmic accelerators or the famous GZK effect?

1966: "End to the CR Spectrum ?"

VOLUME 16, NUMBER 17 PHYSICAL REVIEW LETTERS

END TO THE COSMIC-RAY SPECTRUM?

Kenneth Greisen

Cornell University, Ithaca, New York (Received 1 April 1966)

25 April 1966

Greisen, Zatsepín & Kuz'mín

UPPER LIMIT OF THE SPECTRUM OF COSMIC RAYS

GZK-effect: energy losses in the CMB (predicted 1966 by Greisen, Zatsepin, Kuz'min)

1020

Picture: DESY, Science Communication Lab

1019

GZK-effect: energy losses in the CMB (predicted 1966 by Greisen, Zatsepin, Kuz'min)

photo-pion production $p + \gamma_{\text{CMB}} \to \Delta \to p + \pi^{0} \to \gamma \\ \to n + \pi^{+} \to \nu$ π

Threshold energy: $2E_pE_\gamma = m_\Delta^2 - m_p^2$ $\rightarrow E_p \simeq 6 \cdot 10^{19} \,\mathrm{eV}$

$$\lambda_{eff} = \left(\int n(\epsilon) \cdot c\right)$$

Picture: DESY, Science Communication Lab

Nuclei suffer photo disintegration: $A + \gamma_{CMB} \rightarrow (A - 1) + n \dots$

Simulation of GZK-effect

25

Increasingly Heavy Composition

Auger Coll., PoS(ICRC2019)004

GZK effect or Maximum Source energy ?

 $p + \gamma_{CMB}$ smoking gun... 2.5

Karl-Hetz Kampert – Bergische Universität Wuppertal

Z.3

Maximum source energy

include the region across the ankle. At this first stage, the effect tions occurring in the acceleration sites are not considered, lin hysical parameters related to the energy spectrum and the ma ng the environments of extragalactic sources. In a previous public is single population of extragalactic sources was fitted to the da). Here, since we want to interpret also the ankle region we assure the assure of the ankle region of the assure of the ankle for the ankle feature and the and the ankle feature and the feature and the and the and the and the and the and the feature and the f different componentse Eachiextragalactic component existinates rces, unitermyindistributedinduche bronowingsvollthere exister portoine naller than 30 Mpc. The overdensity is considered as a clus predictions are only extrapolated from the energy spectrum fit. llewing (e); tainity provides a good approximation to nearby den mees stall s

This realisation will make astronomy more difficult (note CR deflections ~ Z)

EeV Neutrinos detectable in inclined air showers

- **Protons & nuclei** initiate showers high in the atmosphere.
 - Shower front at ground:
 - mainly composed of muons
 - electromagnetic component absorbed in atmosphere.
- Neutrinos can initiate "deep" showers close to ground.
 - Shower front at ground: electromagnetic + muonic components

Searching for neutrinos \Rightarrow searching for inclined showers with electromagnetic component

Identifying vs in surface detector data

Karl-Heinz Kampert – Bergische Universität Wuppertal

"young" shower

To translate a non-observation into upper flux limits, you need to know the acceptance (sensitivity) of your experiment and the observation (exposure) time

Karl-Heinz Kampert – Bergische Universität Wuppertal

Exposure

Bounds on a diffuse Flux of EeV Neutrinos

Auger Collaboration, JCAP10 (2019) 022

GZK effect should have given us 2-10 neutrinos **Observed:** None

Bounds on a diffuse Flux of EeV Photons

Similarly, photon upper limits start to constrain cosmogenic photon fluxes of p-sources

Karl-Heinz Kampert – Bergische Universität Wuppertal

Auger Collaboration, JCAP04 (2017) 009, M. Niechciol ICRC2023

GZK effect or Maximum Source energy ?

2.5 4

Karl-Hettz Kampert – Bergische Universität Wuppertal

Maximum source energy

include the region across the ankle. At this first stage, the effect tions occurring in the acceleration sites are not considered, lin hysical parameters related to the energy spectrum and the ma ng the environments of extragalactic sources. In a previous public is single population of extragalactic sources was fitted to the da). Here, since we want to interpret also the ankle region we assure the assure of the ankle ful of the assure of the ankle feature and the angles. The uncertained and the angles are an and the angles and the angles are and the angles. f different componentse Eachier tragalactic component eriginates rces, unitermyindistributedinduche bronowingsvollthere exister portoine naller than 30 Mpc. The overdensity is considered as a clus predictions are only extrapolated from the energy spectrum fit. llewing (e), tainity provides a good approximation to nearby den

This realisation will make astronomy more difficult (note CR deflections ~ Z)

Anisotropies

Karl-Heinz Kampert – Bergische Universität Wuppertal

OWARDS FIGHTING THE SOURCES OF UHEER

Galaxy B ~ μG

Karl-Heinz Kampert – Bergische Universität Wuppertal

Intergalactic Space B∼nG

cosmic rays $E > 10^{19}eV$

$$8^{\circ}\left(\frac{10^{20} \text{ eV}}{E}\right)\sqrt{\frac{L}{10 \text{ Mpc}}}\sqrt{\frac{L_{\text{coh}}}{1 \text{ Mpc}}}\left(\frac{B}{1 \text{ nG}}\right) \underbrace{\mathcal{C}}_{\mathcal{C}}$$

Francesco Romano School, Monopoli, Sept 2023

 $\theta(E,Z) \approx 0.$

Auger Collaboration, Science 357 (2017) 1266

Extragalactic origin of UHECR confirmed

Karl-Heinz Kampert – Bergische Universität Wuppertal

Flux Map above 8 EeV

0.46

dipole direction $(\ell, b) = (233^\circ, -13^\circ)$

▲5 EeV

Flux excess from directions from 0.38 outside Milky Way

Auger Collaboration, Science 357 (2017) 1266

Flux Map above 8 EeV

$$(\pm 10)^{\circ}$$
; $\delta_d = (-24^{+12}_{-13})^{\circ}$

Evolution with Energy: >38 EeV

Auger Collaboration, G. Golup (ICRC 2023)

map smoothed with 27° top-hat Galactic coordinates

-4 -2 0 2 4 Li & Ma significance [σ]

Evolution with Energy: >45 EeV

Auger Collaboration, G. Golup (ICRC 2023)

map smoothed with 25° top-hat Galactic coordinates

4 Directional correlation with

270° 240° 210° 330° GC

> Active core \rightarrow AGN also considered as Starburst Galaxy

UHECR Source Candidates: The usual Suspects...

Karl-Heinz Kampert – Bergische Universität Wuppertal

GRBs

Neutron Stars

AGN with lobes

Starburst Galaxies

Multi-wavelength

Hillas Plot: B vs Size of Accelerators

Karl-Heinz Kampert – Bergische Universität Wuppertal

UHECR Luminosity and Acceleration Requirements

Note: plot applies both for steady and transient sources, when assuming a characteristic time spread of $\tau = 3 \cdot 10^5$ yr.

Towards understanding the Universe at its highest energies

Idea: • investigate possibility of SBGs / y-AGNs / Cen A as sources of over-densities

- build one coherent model for injection \rightarrow propagation \rightarrow detection
- describe arrival directions + spectrum + composition data at the same time

Result of likelihood fit to measured E-spectrum, Composition, and Sky-Map when taking a catalog of all Starburst Galaxies (SBG)

Karl-Heinz Kampert - Bergische Universität Wuppertal

Terese Bister, ICRC2023

when taking a Cen A model (σ =3.4)

Karl-Heinz Kampert - Bergische Universität Wuppertal

Towards understanding the Universe at its highest energies

Conclusion:

- The combined description of arrival directions + spectrum + composition works best with Starburst Galaxies (signal fraction ~20% at E=40 EeV) significance against isotropic sky: 4.5σ
- Blurring found at ~20° at a rigidity of 10 EV
- Maximum source rigidity: R=10^{18.8}V

Data

with composition and

expected sky from SBG

energy spectrum from data

1) The Big Picture: A quick overview 2) Astrophysics and Detection of E<10¹⁴ eV Galactic CRs (very brief) **3)** Air Showers and detection concepts at E>10¹⁴ eV 4) Transition from galactic to extragalactic CRs 5) The end of the CR-spectrum: E_{max} of extragalactic accelerators? **6)** Anisotropies: Hunting the UHECR sources 9) Multi-Messenger: Some examples 8) Related non-CR opportunities 9) UHECR future: challenges and prospects

Menu...

2017: Big Bang of Multimessenger Astrophysics

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20 © 2017. The American Astronomical Society. All rights reserved. OPEN ACCESS

This was a very lucky event...!

Karl-Heinz Kampert – Bergische Universität Wuppertal

Neutron Star Merger GW 170817

observed also in broad range of electromagnetic radiation

with strong bounds on HE neutrino emission

Joint publication by > 3000 authors (LHC scale)

https://doi.org/10.3847/2041-8213/aa91c9

Multi-messenger Observations of a Binary Neutron Star Merger

BND School, Wuppertal, August 2023

Karl-Heinz Kampert – Bergische Universität Wuppertal

GW170817: Time Sequence

 $m_1 = (1.36 - 2.26) M_{\odot}$ $m_2 = (0.86 - 1.36) M_{\odot}$ Host galaxy: NGC 4993 distance: 40 Mpc optical brightness after one day $10^8 L_{\odot} \rightarrow kilonova$ powered by radioactive decays

13:08 UTC LIGO sent a a BNS alert that occurred <2 s before GRB from same direction

Fermi-GBM sent an automated alert

excessive campaign during next days

and weeks

GW170817: Physics across multiple aspects/fields

- General Relativity: gravitational waves
- Cosmology: independent Hubble constant determination
- Astronomy: Follow ups, multiwavelength
- Astrophysics: Compact objects, Neutron stars
- Nuclear Physics: r-process, equation of state
- Particle Physics: Neutrino oscillations
- Astroparticle Physics: Particle acceleration, UHE counterparts

Unique Event

Neutrino Upper Limits for GW170817

Karl-Heinz Kampert – Bergische Universität Wuppertal

sGRB viewed at >20° angle

May have seen neutrinos if jet were pointing towards us

LIGO, ANTARES, IceCube, Auger, The Astrophys. J. Lett. 850 (2017) L35

High energy neutrino from direction of TXS 0506-056

6.5

6.0

5.5

5.0

On Sept. 22, 2017 a 290 TeV neutrino from the direction of TXS 0506-056 was observed by IceCube

 \rightarrow routinely an alert was sent to the Global Coordinate Network (GCN)

Science 361, 146 (2018)

Karl-Heinz Kampert – Bergische Universität Wuppertal

TXS 0506-056 in flaring state

The MAGIC telescope was pointed there and found the blazer entering a flaring state with E_{γ} > 90 GeV

Karl-Heinz Kampert – Bergische Universität Wuppertal

TXS 0506-056 Neutrino Flare ?

Science 361, 146 (2018)

These are two , independent' 3.5σ observations \Rightarrow is TXS 0506-56 a neutrino source?

IceCube then checked archives and found some neutrino excess (flare?) from TXS 0506-56 in 2015

3.5 sigma significance

Search for nu's from TXS 0506+56 with Auger

TXS 0506-056 visibility on daily basis in ES channel of Auger for < 1 hrs but in an unfavourable direction

effective area in comparison to IceCube

Auger Collaboration, ApJ 902 (2020) 105

Karl-Heinz Kampert - University of Wuppertal

1) The Big Picture: A quick overview 2) Astrophysics and Detection of E<10¹⁴ eV Galactic CRs (very brief) **3)** Air Showers and detection concepts at E>10¹⁴ eV 4) Transition from galactic to extragalactic CRs 5) The end of the CR-spectrum: E_{max} of extragalactic accelerators? **6)** Anisotropies: Hunting the UHECR sources 7) Multi-Messenger: Some examples 8) Related non-CR opportunities 9) UHECR future: challenges and prospects

Menu...

Observation of Elves and Terrestrial Gamma-Ray Flashes

Auger Collaboration, Earth and Space Sciences 7 (2020) 1

Observation of Elves and Terrestrial Gamma-Ray Flashes

Auger Collaboration, Earth and Space Sciences 7 (2020) 1

Karl-Heinz Kampert - University of Wuppertal

Karl-Heinz Kampert - University of Wuppertal

Electromagnetic Storm in the Pampa

Scaler rate over the Pierre Auger Observatory during a storm

1) The Big Picture: A quick overview 2) Astrophysics and Detection of E<10¹⁴ eV Galactic CRs (very brief) 3) Air Showers and detection concepts at $E > 10^{14} eV$ 4) Transition from galactic to extragalactic CRs 5) The end of the CR-spectrum: E_{max} of extragalactic accelerators? 6) Anisotropies: Hunting the UHECR sources 7) Multi-Messenger: Some examples 8) Related non-CR opportunities 9) Conclusions, future challenges and prospects

Menu...

Resumé: What did we learn... TEV GAMMA-ASTRONOMY

The last 15 years have been a series of important discoveries

this list is very subjective and selective...

Resumé: What did we learn... TEV NEUTR_ASTRONOMY

The last 15 years have been a series of important discoveries

this list is very subjective and selective...

2012: First detection of astrophysical neutrinos, IceCube, Science 342 (2013)

Neutrino Sky 2020

Galactic Plane 2023

Several 3.5σ indications of bursting point sources

steady sources more difficult because of huge horizon

 \Rightarrow Need more data

Resumé: What did we learn... UHE COSMIC RAYS

The last 15 years have been a series of important discoveries

this list is very subjective and selective...

2008: First detection of Flux suppression by Auger and HiRes PRL 101 (2008)

2010: Increasing Mass composition PRL 104 (2010)

Karl-Heinz Kampert – Bergische Universität Wuppertal

10¹⁹

Waiting for 5σ source detection, yet (only 4.5σ 's so far)

 \Rightarrow challenge: proton-astronomy

Pierre Auger: Open Data & Open Source

- 10% cosmic ray data
- 100% atmospheric data
- Close to raw data and higher level reconstruction
- Surface and Fluorescence Detectors
- JSON and summary CSV files
- Python code for data analysis

analysis Try out your own ideas! Offline reconstruction framework is open source

Datasets

<u>the released</u> <u>datasets and their</u> <u>complementary</u> data

Visualize

<u>an online look at</u> <u>the released</u> <u>pseudo raw</u> <u>cosmic-ray data</u>

Karl-Heinz Kampert – Bergische Universität Wuppertal

https://opendata.auger.org doi 10.5281/zenodo.4487613

<u>Analyze</u>

example analysis codes in online python notebooks to run on the datasets

Karl-Heinz Kampert – Bergische Universität Wuppertal

Telescope Array now upgraded to TA*4 (start operation 2024) \rightarrow increasing size from 700 km² to 2800 km² (focussed to higher energies)

Auger upgraded to AugerPrime (start operation 2023) \rightarrow enhance composition capabilities to allow "proton astronomy" and enhance particle physics capabilities

Karl-Heinz Kampert – Bergische Universität Wuppertal

UHECR: Ongoing ...

Next...: Global Cosmic ray ObServatory (GCOS)

conceptual design, targeted at

- full efficiency at 10 EeV
- energy resolution <10%, muon resolution <10%
- Xmax better than 30 g/cm²
- angular resolution ~1°
- strong MM capabilities with photons and neutrinos

 \Rightarrow source correlations at 5 σ within one year of operation

Karl-Heinz Kampert – Bergische Universität Wuppertal

- Distributed UHECR Observatory covering > 60,000 km²
- Several highly attended workshops were conducted for

concepts for simplified fluorescence telescopes

Cost/ nce

POEMMA: Stereo Fluorescence Obs. from Space

- Two science cases: UHECR and neutrinos, both with full sky coverage
- Good X_{max} and ok energy resolution (\rightarrow mediocre rigidity resolution) and very high aperture
- Complementary to GRAND in many aspects: technology, space vs. ground, ...

POEMIMA-Stereo

Karl-Heinz Kampert – Bergische Universität Wuppertal

POEMIMA-Linnb

Visionnosefcebetechen2

- Multi-component facility (low- and high-energy & multi-messenger) • In-ice optical Cherenkov array with 120 strings and 240m spacing • Surface array (scintillators & radio antennas) for PeV-EeV CRs & veto
- Askaryan radio array for >10PeV neutrino detection

Karl-Heinz Kampert – Bergische Universität Wuppertal

GRAND: Giant Radio Array for Neutrino Detection

UHECR

- UHECR as important second science case next to neutrinos
- various sites worldwide
 - main ones in China
- 200,000 km² total
 - inclined showers only
 - aperture of 100,000 km² sr
- Possibly X_{max} measurement in addition to energy, but no muon detection at most sites
 - mediocre mass resolution
- strengths is the high statistics
- common sites with GCOS possible, but different requirements on accuracy

TeV Gammas:

cherenkov telescope array

pSCT

50-0 1 -----

MST 12 m 80 t

SST 4 m 20 t

Cta

Karl-Heinz Kampert – Bergische Universität Wuppertal

(H)

The last of 1920

CTA ARRAY SITES

Karl-Heinz Kampert – Bergische Universität Wuppertal

CTA North ORM La Palma, Spain

CTA South ESO, Chile

EXCLUSION CONTRACTOR OF THE SECTION OF THE SECTION

Karl-Heinz Kampert – Bergische Universität Wuppertal

