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Recap of Lecture 1...
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Hagedorn temperature: a limiting value?
e.g. following K Redlich, H Satz in “Melting Hadrons, Boiling Quarks”, J Rafelski ed (Springer, 2016)

● partition function for a system of non-interacting pions: 

● interactions as resonance formation:
○ interacting system of pions ßà non-interacting gas of all possible resonances

● inserting Hagedorn’s spectrum:

○ energy pumped into such a system, goes to creating heavier and heavier resonances
○ asymptotically reaching TH

à TH would then be the maximum possible temperature in the universe!
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1975, Cabibbo and Parisi: “quark liberation” at high T
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● TH not maximum attainable, simply: for T > TH quarks not confined any more

first phase diagram!



The MIT Bag Model
● the essential phenomenology of confinement is described as follows:

○ assume quarks are confined within bubbles (bags) of perturbative (=empty) vacuum 
○ on which the QCD vacuum (“liquid”) exerts a confining pressure B (= bag constant)
○ B ~ Λ)*+, à hadron size ~ 1/ 𝚲𝑸𝑪𝑫

5
(from: K Gottfried and V Weisskopf, “Concepts of Particle Physics”, Vol. II, Oxford University Press, 1986)



● at low temperature the hadron gas is the stable phase
● but there is a temperature (TC) above which the QGP “wins”

○ thanks to the larger number of degrees of freedom
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one can easily derive:

and plugging in 𝐵!/#~ 200MeV
one gets:

not too bad... 
(latest lattice estimate: 156.5 ± 1.5 MeV)
[A Bazavov et al. Phys.Lett.B 795 (2019) 15]
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Lattice QCD
● the rigorous way of performing calculations in the non-perturbative regime of QCD
● discretisation on a space-time lattice 

○ à ultraviolet (i.e. large-momentum scale) divergencies can be avoided
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[A Bazavov et al. PRD 90 094503 (2014)]

○ around critical temperature (TC): rapid change of
■ energy density 𝜀
■ entropy density s
■ pressure density p

○ due to activation of partonic degrees of freedom
○ at zero baryon density à smooth crossover
○ TC = (156.5 ± 1.5) MeV

○ 𝜀 ~ O(GeV/fm3)

[A Bazavov et al. Phys.Lett.B 795 (2019) 15]



Centrality and geometry
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● central collisions
○ small impact parameter b
○ high number of participants à high multiplicity

● peripheral collisions
○ large impact parameter b
○ low number of participants à low multiplicity

for example: sum of the amplitudes                                   
in the ALICE V0 scintillators
reproduced by Glauber model fit (red):

○ random relative position of nuclei in transverse plane
○ Woods-Saxon distribution inside nucleus
○ simple particle production model 
○ (deviation at very low amplitude expected due to              

non-nuclear (electromagnetic) processes)

b



Strangeness enhancement

● restoration of c symmetry -> increased production of s
○ mass of strange quark in QGP expected to go back to current value

■ mS ~ 150 MeV ~ Tc
à copious production of 𝑠�̅� pairs, mostly by gg fusion 

[J Rafelski: Phys. Rep. 88 (1982) 331]
[J Rafelski and B Müller: Phys.  Rev. Lett. 48 (1982) 1066]

● deconfinement à stronger effect for multi-strange
○ can be built recombining s quarks
à strangeness enhancement increasing 

with strangeness content
à expect larger for Ω(𝑠𝑠𝑠) than for Ξ(𝑠𝑠𝑑) than for Λ(𝑠𝑢𝑑)

[P Koch, B Müller and J Rafelski: Phys. Rep. 142 (1986) 167]
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Strangeness enhancement at the SPS

● WA97/NA57
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● enhancement relative to p-Be, p-Pb

● increasing with |S|

● up to ~ x 20 for the Ω
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Quarkonium suppression
● QGP signature proposed by Matsui and Satz, 1986
● quarkonium: 𝑐𝑐 states (charmonium), 𝑏𝑏 states (bottomonium)
● in the plasma phase the interaction potential is expected to be screened

○ analogous to Debye screening in electromagnetic plasma
○ beyond the Debye screening length 𝜆+

12[Digal, Petrecki, Satz  PRD 64(2001) 0940150]

𝜆" depends on T

à states with radius > 𝜆& will not bind à suppressed
● J/𝜓,𝜓’, 𝜒' à 𝑐𝑐 states
● Υà 𝑏𝑏 states
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NA50 experiment

● muon spectrometer 
○ high-mass lepton pairs
○ J/𝜓 production
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J/𝜓 suppression at the SPS

● nuclear suppression of J/𝜓 production
○ due to nuclear absorption effects
○ measured in pA, light ion collisions
○ scaled to Pb-Pb (= 1 in the plot)

● “anomalous” suppression
○ measured/expected
○ sets in at e ~ 2.3 GeV/fm3 (b ~ 8 fm)
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● NA50: “anomalous” suppression
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Two pillars of year 2000 announcement
● strangeness enhancement, J/𝜓 suppression



... meanwhile, in the US...

● 1978: start of construction of ISABELLE pp collider at Brookhaven (400 GeV)
● 1978: approval of transformation of SPS into 𝑝�̅� collider at CERN (630 GeV)
● 1981-82: problems in production of ISABELLE magnets
● 1983: discovery of W± (January) and Z0 (May) bosons at SPS collider
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... meanwhile, in the US...

● 1978: start of construction of ISABELLE pp collider at Brookhaven (400 GeV)
● 1978: approval of transformation of SPS into 𝑝�̅� collider at CERN (630 GeV)
● 1981-82: problems in production of ISABELLE magnets
● 1983: discovery of W± (January) and Z0 (May) bosons at SPS collider

● July 1983: construction of ISABELLE stopped, project cancelled
● July 1983: NSAC town meeting in Aurora: ISABELLE infrastructure to build a RHIC

○ Relativistic Heavy-Ion Collider
○ (that was quick, but already in 1981, at an ISABELLE workshop in Brookhaven...)
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... meanwhile, in the US...

● 1978: start of construction of ISABELLE pp collider at Brookhaven (400 GeV)
● 1978: approval of transformation of SPS into 𝑝�̅� collider at CERN (630 GeV)
● 1981-82: significant problems in production of ISABELLE magnets
● 1983: discovery of W± (January) and Z0 (May) bosons at SPS collider

● Jul 1983: construction of ISABELLE stopped, project cancelled
● Jul 1983: NSAC town meeting in Aurora: ISABELLE infrastructure to build a RHIC

○ Relativistic Heavy-Ion Collider
○ (that was quick, but already in 1981, at an ISABELLE workshop in Brookhaven...)

● 1986: start of heavy-ion collisions at CERN/SPS and Brookhaven/AGS 
● 1987: start of RHIC R&D
● 1991: start of construction
● 2000: first collisions

21



The RHIC experiments
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Azimuthal asymmetry
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… in the transverse momentum distribution                 
of produced particles

● why is it important?
● non-central collisions are asymmetric in azimuth 

azimuth = angle in the plane of the screen

® transfer of this asymmetry to momentum space provides a measure of the strength of 
collective phenomena 

• large mean free path 
– particles stream out isotropically, no memory of the asymmetry 
– extreme: ideal gas  (infinite mean free path) 

• small mean free path
– larger density gradient -> larger pressure gradient -> larger momentum 
– extreme: ideal liquid (zero mean free path, hydrodynamic limit)



v2 at RHIC
● to quantify the asymmetry:

à Fourier expansion of the angular distribution:

○ in the central detector region (ϑ ~ 90º) à v1 ~ 0 à asymmetry quantified with v2
○ v2: “elliptic flow coefficient”

● experimentally: low-pT v2 ~ as large as expected by hydrodynamics
○ mean free path ~ 0  
○ i.e. 𝜂/𝑠 at minimum

à “almost-perfect liquid”
○ very efficient transfer of asymmetry                                                                                         

from coordinate to momentum space
à “hard” equation of state
à crucial support for QGP picture! 

24

∝1+ 2v1 cos(ϕ −ψ1)+ 2v2 cos(2[ϕ −ψ2 ])+...

STAR: Phys. Rev. Lett. 90 (2003) 32301



Nuclear modification factor

● participant vs collisions

• “soft”, large cross-section processes expected to scale like Npart
• “hard”, low cross-section processes expected to scale like Ncoll

25

RAA =
(dN / dpT )AA

Ncoll (dN / dpT ) pp

● RAA: “nuclear modification factor”
○ quantifies deviation from Ncoll scaling



Nuclear modification factor at RHIC
● high-pT should follow Ncoll

○ if no nuclear/medium effects
● clearly violated for central collisions
● indication of energy loss of partons in the QGP!

○ not due to initial-state effects
○ (checked with pA, dA collisions)

● coherent with picture from azimuthal correlations

26
STAR: Phys.Rev.Lett. 89 (2002) 202301



... meanwhile, in Europe...

● 1984: ECFA meeting in Lausanne: pp machine in LEP tunnel
○ (n.b.: first collisions in LEP only in 1989!)

● 1986 start of heavy-ion collisions at CERN/SPS and Brookhaven/AGS
● capability to collide heavy ions in LHC quickly realised

○ mentioned at a workshop on Physics at Future Accelerators in La Thuile in 1987
● 1989 LHC workshop in Aachen

○ physics case for heavy-ion programme, start of organisation of experimental community
● 1992 Expression of Interest (Heavy-Ion Proto-Collaboration)
● 1993 Letter of Intent (A Large Ion Collider Experiment)

○ reusing the magnet of LEP experiment L3 at Interaction Point 2
● 1995 ALICE Technical Proposal
● 1997 ALICE approved by CERN Research Board
● 2000’s construction, installation, commissioning
● 2009 first collisions
● 2010 first Pb-Pb collisions!

27
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Nuclear collisions at the Large Hadron Collider

● ideal conditions: net baryon density = 0
○ close to conditions at Big Bang
○ theoretical calculations more reliable

● LHC is an excellent collider of nuclei!
○ excellent luminosity
○ even asymmetric collisions (p-Pb) in spite of 2-in-1 design!

● abundance of hard, “calibrated” probes
○ heavy flavour, jets, …

● very high multiplicity
○ key for precision studies of collectivity

● state-of-the-art detectors

● ALICE
○ dedicated experiment
○ 1030 authors, 171 institutions, 40 countries

● ATLAS, CMS, LHCb also participating in programme
29



The ALICE experiment

● two main parts:
○ barrel (|h|<0.9), B = 0.5 Tesla
○ muon spectrometer, -4<h<-2.5

● high-precision reconstruction:
○ low material tracking
○ high-resolultion vertexing
○ hadron and lepton ID

● triggers:
○ minimum-bias (MB)

■ or centrality, in Pb-Pb
○ single and di-muon
○ EMCAL, high-mult., UPC
○ TRD

● collisions systems (so far) : Pb-Pb, pp, p-Pb, Pb-p, Xe-Xe
30



Identified particles

31
ALICE, arXiv:1910.07678



More and more species

● Resonances, hyperons,…

32

à QGP hadronisation, radial expansion, freeze-out, …
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A Large Ion Collider Experiment

Integrated yields

33

pp: /1000
Pb-Pb: /300

Tchem ≈ TC ≈ 156 MeV

● hadron chemistry in central Pb-Pb
○ ~at thermodynamic equilibrium
à very different from pp!
à strangeness enhancement!
○ looking at the fine print: some deviations

■ a few σ: K*, p/Λ/Ξ
à key window on interactions in hadronic final state

● … even for nuclei, hypernuclei
○ in spite of very low binding energy!
○ substantial enhancement wrt pp
à AA is a (hyper-)nuclei factory
○ for each additional nucleon:

arXiv:2211.04384

à hadronisation very close to the phase transition  



Lattice QCD
● the rigorous way of performing calculations in the non-perturbative regime of QCD
● discretisation on a space-time lattice 

○ à ultraviolet (i.e. large-momentum scale) divergencies can be avoided
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[A Bazavov et al. PRD 90 094503 (2014)]

○ around critical temperature (TC): rapid change of
■ energy density 𝜀
■ entropy density s
■ pressure density p

○ due to activation of partonic degrees of freedom
○ at zero baryon density à smooth crossover
○ TC = (156.5 ± 1.5) MeV

○ 𝜀 ~ O(GeV/fm3)

[A Bazavov et al. Phys.Lett.B 795 (2019) 15]



A Large Ion Collider Experiment

Higher harmonics: a beautiful tool…

35

initial-state geometrical asymmetries           final state momentum asymmetries
○ dynamic response of QCD medium
○ interaction of hard probes with QCD medium

à Fourier decomposition of azimuthal distribution 
○ “flow harmonics”
○ sensitive to transport parameters of medium



A Large Ion Collider Experiment

Entering precision era!
● High data quality enables quantitative extraction of medium parameters

○ e.g.: Bayesian parameter estimation from ALICE (mainly) data (Duke group)
à extraction of temperature dependence of medium bulk and shear viscosity

36

QGP shear viscosity vs. temperature

Water

Helium

Quark-gluon
plasma

ALICE

ALICE

ALICE

ALICE+CMS

ALICE
CMS

à QGP viscosity with ~20% precision
à QGP ~10 times less viscous than any other form of matter

ALICE, Nat. Phys. 15 (2019) 
1113



Heavy Flavour

● ideal probes of QGP at LHC
○ large cross sections 
○ generated in initial hard parton scatterings
○ controlled values of mass and colour charge 

of propagating parton
○ large value of mass à “brownian” probes
○ sensitive to QGP hadronisation

37



a gold mine!

Beautiful data from the LHC!
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● controlled probe
○ mass
○ colour charge
○ pQCD

● generated in initial parton scattering
● conserved throughout evolution
● large mass à “Brownian” probe
● powerful probe of hadronisation

experimentally:
● strongly coupled to medium 
● clear hierarchy at low pT

ALICE: JHEP01 (2022) 174



Strongly involved in the flow
and v3!

39ALICE: Phys. Lett. B 813 (2021) 136054 CMS: Phys. Lett. B 816 (2021) 136253

v2



State-of-the-art...

● ddd

40

● substantial model constraints...

● 50% uncertainty on diffusion coefficient
○ it starts to be a measurement!

ALICE: JHEP01 (2022) 174



A new regime for J/𝜓 production!

● a remarkable change of behaviour from SPS/RHIC!

● in both the centrality and the pT dependence
● evidence for production by recombination of exogamous 𝑐 ̅𝑐 pairs!
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Charm quarks themselves flow
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Beauty is quenched, too...

● less so than charm...
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... and it flows, too...

● less so than charm...

● similar trend for v3:

44



Υ states seem to follow a sequential suppression pattern

45

CMS: PLB 790 (2019) 270 CMS: PAS-HIN-21-007



... but the Υ doesn’t seem to flow much...
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... but the Υ doesn’t seem to flow much...
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CMS: PLB 819 (2021) 136385 

● could it be that b quarks don’t flow?
○ and B get their flow from light quarks?
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CMS: PLB 819 (2021) 136385 

● could it be that b quarks don’t flow?
○ and B get their flow from light quarks?

● but should Υ flow reflect b quark flow?
○ recombination component should be small
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CMS: PLB 819 (2021) 136385 

● could it be that b quarks don’t flow?
○ and B get their flow from light quarks?

● but should Υ flow reflect b quark flow?
○ recombination component should be small

● shouldn’t Υ suppression feel the geometry?
○ shouldn’t that asymmetry be there, at least?



... but the Υ doesn’t seem to flow much...
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CMS: PLB 819 (2021) 136385 

● could it be that b quarks don’t flow?
○ and B get their flow from light quarks?

● but should Υ flow reflect b quark flow?
○ recombination component should be small

● shouldn’t Υ suppression feel the geometry?
○ shouldn’t that asymmetry be there, at least?

● perhaps two populations?
○ e.g.: colour octet and colour singlet?
○ colour octet disappears?
○ colour singlet goes through ~ isotropically?

● 🤔...


