Classification of the processes in the SM

Leptonic Decays

the prototype of these decays is given by

$$
\begin{equation*}
\pi^{+} \quad \longrightarrow \mu^{+}+\nu_{\mu} \tag{35}
\end{equation*}
$$

which at the fundamental level is given by

Other possible leptonic decays are given by

$$
\begin{aligned}
& K^{+} \longrightarrow \mu^{+}+\nu_{\mu} \\
& D^{+} \longrightarrow \mu^{+}+\nu_{\mu} \\
& B^{+} \longrightarrow \tau^{+}+\nu_{\tau} \\
& \pi^{+} \longrightarrow e^{+}+\nu_{e}
\end{aligned}
$$

Semi-leptonic Decays

these are the better sources to measure the absolute values of the CKM matrix elements $\mid \mathrm{V}$ ij|

Non-leptonic Decays
Penguins contractions and all that

$$
\begin{aligned}
& K^{-} \rightarrow \pi^{-} \pi^{0} \\
& H_{W}=-\frac{G_{E} V_{u S} V_{u d}^{*} \overline{\sqrt{2}} \gamma^{\mu}\left(1-\gamma_{5}\right) s \bar{d} \gamma_{\mu}\left(1-\gamma_{S}\right) u}{}
\end{aligned}
$$

Non-leptonic Decays
Penguins contractions and all that

$$
k^{+0} \xrightarrow[\rightarrow]{\circ} \pi^{+^{0}} \pi^{0}
$$

$$
H_{W}=-\frac{G_{F}}{\sqrt{2}} V_{U S} V_{u d}^{*} \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) s \bar{d} \gamma_{\mu}\left(1-\gamma_{s}\right) u
$$

annihilations

Non-leptonic Decays Penguins contractions and all that
penguin contractions

Penguins diagrams

other ops

All Topologies

Figure 1: Non-penguin diagrams. The dashed line represents the four-fermion operator.

All Topologies

Figure 2: Penguin diagrams.
for heavy mesons many particles in the final state

Rare Penguin Radiative Decays

The main issue in this Group Meeting will be represented by $\mathrm{b} \rightarrow \mathrm{s}$ quark transitions: the best example is offered by the neutral-current semileptonic $B \rightarrow K(*) I+l$ - transitions!

Many interesting properties:

1. Loop-level processes (FCNCs are forbidden at tree level in the Standard Model)
2. CKM-suppressed decays, where

$$
J_{\text {charged }}^{\mu}=\bar{u}_{L}^{i} V_{C K M}^{i j} \gamma^{\mu} d_{L}^{j}+\bar{\nu}_{L}^{i} \gamma^{\mu} \ell_{L}^{i}
$$

L. Vittorio (LAPTh \& CNRS, Annecy)

$$
B^{+} \rightarrow K^{(*)+} \gamma \quad B^{+} \rightarrow K^{(*)+} \mu^{+} \mu^{-}
$$

since different neutrinos have a mass and they can mix, $\mu \rightarrow e \gamma$ is a possible decay which satisfies all the symmetry constraints

$$
\mathcal{B}(\mu \rightarrow e \gamma) \sim \alpha \frac{m_{\nu}^{4}}{m_{W}^{4}} \sim 10^{-52}
$$

note that the photon is emitted by the W boson, analogy radiative B decays

Figura 4: quark process

Radiative Penguins

PENGUINS AND BOXES

Pure leptonic Bs decays

$$
\operatorname{Br}\left(B_{s} \rightarrow l^{+} l^{-}\right)=\tau\left(B_{s}\right) \frac{G_{\mathrm{F}}^{2}}{\pi}\left(\frac{\alpha}{4 \pi \sin ^{2} \Theta_{\mathrm{W}}}\right)^{2}{F_{B_{s}}^{2}}^{2} n_{l}^{2} m_{B_{s}} \sqrt{1-4 \frac{m_{l}^{2}}{m_{B_{s}}^{2}}\left|V_{t b}^{*} V_{t s}\right|^{2} Y^{2}\left(x_{t}\right), ~}
$$

G. Buchalla and A.J. Buras, Nucl. Phys. B 400 (1993) 225.

Many interesting properties:

1. Helicity suppressed
2. Non-perturbative hadronic contributions enter via Bs decay constant

(a)

(b)

(c)

valskyi's seminar @ CERN (26/7/22)
Lowest order

QCD corrections at NLO or NNLO

BOXES

Mixing of Neutral Mesons

$$
\begin{aligned}
K^{0} & \leftrightarrow \bar{K}^{0} \\
D^{0} & \leftrightarrow \bar{D}^{0} \\
B^{0} & \leftrightarrow \bar{B}^{0}
\end{aligned}
$$

in the case of kaons
also charm and up quarks contribute
for D and K meson mixing there are important long distance contributions

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{\Delta B=2}= & \frac{G_{\mathrm{F}}^{2}}{16 \pi^{2}} M_{W}^{2}\left(V_{t b}^{*} V_{t q}\right)^{2} \eta_{B} S_{0}\left(x_{t}\right) \times \\
& \times\left[\alpha_{s}^{(5)}\left(\mu_{b}\right)\right]^{-6 / 23}\left[1+\frac{\alpha_{s}^{(5)}\left(\mu_{b}\right)}{4 \pi} J_{5}\right] Q^{q}(\Delta B=2)+\text { h.c. }
\end{aligned}
$$

The Effective Hamiltonian, Wilson OPE

 and QCD Corrections

$$
\begin{aligned}
& q \sim m_{K} \ll M_{W} \\
& \mathcal{H}_{e f f}=-\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left(\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) u\right)\left(\bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d\right)
\end{aligned}
$$

GENERAL FRAMEWORK: THE OPE

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{FI}}\left(2 \pi^{4}\right) \delta^{4}\left(\mathrm{p}_{\mathrm{F}}-\mathrm{p}_{\mathrm{I}}\right)=\int \mathrm{d}^{4} \mathrm{x} \mathrm{~d}^{4} \mathrm{y} \mathrm{D}_{\mu \mathrm{v}}\left(\mathrm{x}, \mathrm{M}_{\mathrm{W}}\right) \\
& \langle\mathrm{F}| \mathrm{T}\left[\mathrm{~J}_{\mu}(\mathrm{y}+\mathrm{x} / 2) \mathrm{J}^{\dagger}{ }_{V}(\mathrm{y}-\mathrm{x} / 2)\right]|\mathrm{I}\rangle \\
& \langle\mathrm{F}| \mathrm{H}^{\Delta S=1}|\mathrm{I}\rangle= \\
& \mathrm{G}_{\mathrm{F}} / V^{2} V_{\text {ud }} \mathrm{V}_{\mathrm{us}}^{*} \quad \Sigma_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mu) \frac{\langle\mathrm{F}| \mathrm{Q}_{\mathrm{i}}(\mu)|\mathrm{I}\rangle}{\left(\mathrm{M}_{\mathrm{W}}\right)^{\mathrm{di}-6}}
\end{aligned}
$$

$d i=$ dimension of the operator $Q_{i}(\mu)$
$C_{i}(\mu)$ Wilson coefficient: it depends on M_{w} / μ and $\alpha_{w}(\mu)$ $Q_{i}(\mu)$ local operator renormalized at the scale μ

GENERAL FRAMEWORK

$$
\begin{aligned}
& \mathrm{H}^{\Delta \mathrm{S}=1}=\mathrm{G}_{\mathrm{F}} / \sqrt{ } 2 \mathrm{~V}_{\mathbf{u d}} \mathrm{V}_{\mathrm{us}}^{*} *\left[(1-\tau) \Sigma_{\mathrm{i}=1,2} \mathrm{z}_{\mathbf{i}}\left(\mathrm{Q}_{\mathrm{i}}-\mathrm{Q}_{\mathrm{i}}^{\mathbf{c}}\right)+\right. \\
& \left.\tau \Sigma_{\mathrm{i}=1,10}\left(\mathrm{z}_{\mathbf{i}}+\mathrm{y}_{\mathbf{i}}\right) \mathrm{Q}_{\mathbf{i}}\right]
\end{aligned}
$$

Where y_{i} and z_{i} are short distance coefficients, which are known in perturbation theory at the NLO (Buras et al. + Ciuchini et al.)

$$
\tau=-\mathrm{V}_{\mathrm{ts}}^{*} \mathrm{~V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{us}}{ }^{*} \mathrm{~V}_{\mathrm{ud}}
$$

We have to compute $\mathrm{A}^{\mathrm{I}=0,2_{\mathrm{i}}}=\left\langle(\pi \pi)_{\mathrm{I}=0,2}\right| \mathrm{Q}_{\mathbf{i}}|\mathrm{K}\rangle$ with a non perturbative technique (lattice, QCD sum rules, $1 / \mathbb{N}$ expansion etc.)

$$
\mathrm{A}_{\mathbf{0}}=\sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mu)\left\langle(\pi \pi) \mathrm{IQ}_{\mathrm{i}}(\mu) \mathrm{I} \mathrm{~K}\right\rangle_{\mathrm{I}=\mathbf{0}}\left(1-\Omega_{\mathrm{IB}}\right)
$$

$\mu=$ renormalization scale μ-dependence cancels if operator matrix elements are consistently computed

$$
\mathcal{A}_{2}=\sum_{i} C_{i}(\mu)\langle(\pi \pi)| Q_{i}(\mu)|K\rangle_{I=2}
$$

$\Omega_{\mathrm{IB}}=0.25 \pm 0.08$ (Munich from Buras \& Gerard) 0.25 ± 0.15 (Rome Group) $\quad 0.16 \pm 0.03$ (Ecker et al.) 0.10 ± 0.20 Gardner \& Valencia, Maltman \& Wolf, Cirigliano \& al.

$$
\begin{aligned}
& \mathrm{A}^{\mathrm{I}=0,2}{ }_{\mathrm{i}}(\mu)=\left\langle(\pi \pi)_{\mathrm{I}=0,2} \mathrm{IQ}_{\mathrm{i}}(\mu) \mathrm{IK}\right\rangle \\
& \quad=\mathrm{Z}_{\mathrm{ik}}(\mu \mathrm{a})\left\langle(\pi \pi)_{\mathrm{I}=0,2} \mathrm{IQ}_{\mathrm{k}}(\mathrm{a}) \mathrm{IK}\right\rangle
\end{aligned}
$$

Where $Q_{i}(a)$ is the bare lattice operator And a the lattice spacing.

The effective Hamiltonian can then be read as:
$\langle\mathrm{F}| \mathrm{H}^{\Delta \mathrm{S}=1}|\mathrm{I}\rangle=\mathrm{G}_{\mathrm{F}} / \sqrt{ } 2 \mathrm{~V}_{\mathrm{ud}} \mathrm{V}_{\mathrm{us}}{ }^{*} \mathrm{\Sigma}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(1 / \mathrm{a})\langle\mathrm{F}| \mathrm{Q}_{\mathrm{i}}(\mathrm{a})|\mathrm{I}\rangle$

In practice the renormalization scale (or $1 / \mathrm{a}$) are the scales which separate short and long distance dynamics

GENERALFRAMEWORK

$\left\langle\mathrm{H}^{\Delta S=1}\right\rangle=\mathrm{G}_{\mathrm{F}} / \sqrt{2} \mathrm{~V}_{\mathrm{ud}} \mathrm{V}_{\mathrm{us}}{ }^{*} \ldots \Sigma_{\mathrm{i}} \mathrm{C}_{\mathbf{i}}(\mathbf{a})\left\langle\mathrm{Q}_{\mathrm{i}}(\mathbf{a})\right\rangle$ $M_{w}=100 \mathrm{GeV}$
 Effective Theory - quark \& gluons
 $$
\mathrm{a}^{-1}=2-5 \mathrm{GeV}
$$
 Hadronic non-perturbative region
 $$
\Lambda_{\mathrm{QCD}}, \mathrm{M}_{\mathrm{K}}=0.2-0.5 \mathrm{GeV}
$$

 $\Lambda_{\mathrm{QCD}}, \mathrm{M}_{\mathrm{K}}=0.2-0.5 \mathrm{GeV}$

 $\Lambda_{\mathrm{QCD}}, \mathrm{M}_{\mathrm{K}}=0.2-0.5 \mathrm{GeV}$}100 GeV

THE SCALE PROBLEM: Effective theories prefer low scales, Perturbation Theory prefers large scales
if the scale μ is too low
problems from higher dimensional operators
(Cirigliano, Donoghue, Golowich)

- it is illusory to think that the problem is solved by using dimensional regularization

on the lattice this problem is called DISCRETIZATION ERRORS

(reduced by using improved actions and/or scales $\mu>2-4 \mathrm{GeV}$

Weak Hamiltonian for $K \rightarrow \pi \pi$

Weak Hamiltonian is given by local four-quark operator Courtesy by Xu Feng

$$
\mathcal{H}^{\Delta S=1}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{\sum_{i=1}^{10}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right] Q_{i}\right\}, \quad \tau=-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}
$$

- $\tau=-\frac{V_{t t} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}=1.543+0.635 i$
- $z_{i}(\mu)$ and $y_{i}(\mu)$ are perturbative Wilson coefficients
- Q_{i} are local four-quark operator

Electro-weak penguin $Q_{7}-Q_{10}$
dominate $\operatorname{Re}\left[A_{0}\right], \operatorname{Re}\left[A_{2}\right] \quad Q_{6}$ dominate $\operatorname{Im}\left[A_{0}\right]$

New local four-fermion operators are generated

$$
\begin{array}{ll}
\mathrm{Q}_{1}=\left(s_{L}{ }^{-A} \gamma_{\mu} u_{L}^{B}\right)\left(u_{L}{ }^{B} \gamma_{\mu} d_{L}{ }^{A}\right) & \text { Current-Current } \\
\mathrm{Q}_{2}=\left(s_{L}^{A} \gamma_{\mu} u_{L}^{A}\right)\left(u_{L}{ }_{L} \gamma_{\mu} d_{L}{ }^{\text {d }}\right) &
\end{array}
$$

$$
\mathrm{a}_{3,5}=\left(\bar{s}_{\mathrm{R}}^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right) \Sigma_{\mathrm{q}}\left(\mathrm{q}_{L, \mathrm{R}^{\mathrm{B}}}^{-\gamma_{\mu}} \mathrm{q}_{\mathrm{L}, \mathrm{R}}{ }^{\mathrm{B}}\right) \quad \text { Gluon. }
$$

$$
Q_{4,6}=\left(s_{R}^{A} \gamma_{\mu} d_{L} d^{B}\right) \sum_{q}\left(q_{L, R}{ }^{B} \gamma_{\mu} q_{L, R}{ }^{A}\right) \quad \text { Penguins }
$$

$\mathrm{Q}_{7,9}=3 / 2\left(\bar{s}_{R}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right) \sum_{\mathrm{q}} \mathrm{e}_{\mathrm{q}}\left(\mathrm{q}_{\mathrm{R}, \underline{\mathrm{L}}}^{-\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{R}, \mathrm{L}}{ }^{\mathrm{B}}\right)$ Electroweak $Q_{8,10}=3 / 2\left(s_{R}^{A} \gamma_{\mu} d_{L}^{B}\right) \sum_{q} e_{q}\left(q_{R, L}^{-} \gamma_{\mu} \gamma_{R, L}{ }^{A}\right)$ Penguins
+Chromomagnetic end electromagnetic operators

$$
\mathcal{A}(K \rightarrow \pi \pi)=\sum_{i} C_{W}^{i}(\mu)\langle\pi \pi| O_{i}(\mu)|K\rangle
$$

CP Violation in the Neutral Kaon System

Expanding in several "small"

quantities

$$
\begin{aligned}
& \eta^{00}=\frac{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{W}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{W}\left|\mathrm{~K}_{S}\right\rangle} \sim \varepsilon-2 \varepsilon^{\prime} \\
& \eta^{+-}=\frac{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{W}\left|\mathrm{~K}_{\mathrm{L}}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{W}\left|\mathrm{~K}_{\mathrm{S}}\right\rangle} \sim \varepsilon+\varepsilon^{\prime}
\end{aligned}
$$

Conventionally:

$$
\begin{aligned}
& \left|K_{S}\right\rangle^{\prime}=\left|K_{1}\right\rangle_{C P=+1}+\varepsilon\left|K_{2}\right\rangle_{C P=-1} \\
& \left|K_{L}\right\rangle^{\prime}=\left|K_{2}\right\rangle_{C P=-1}+\varepsilon\left|K_{1}\right\rangle_{C P=+1}
\end{aligned}
$$

Indirect CP violation: mixing

$$
\mathcal{E}_{\mathrm{K}} \quad\left|\mathrm{~K}_{\mathrm{L}}\right\rangle=\mid \mathrm{K}_{2}{ }^{{ }^{\prime} \mathrm{CP}=-1} \quad{ }_{\mathrm{CP}=+1}
$$

Box diagrams:
They are also responsible
Complex $\Delta S=2$ effective coupling
for B^{0} - B^{0} mixing
$\Delta m_{d, s}$
$\left|\varepsilon_{k}\right| \sim C_{\varepsilon} A^{2} \lambda^{6} \sigma \sin \delta$

$$
\left\{F\left(x_{c}, x_{t}\right)+F\left(x_{t}\right)\left[A^{2} \lambda^{4}(1-\sigma \cos \delta)\right]-F\left(x_{c}\right)\right\}
$$ B_{K}

$\eta=\sigma \sin \delta \quad \rho=\sigma \cos \delta$

Inami-Lin

 Functions + QCDCorrections (NLO)
$C_{\varepsilon}=\frac{G^{2}{ }_{F} M^{2}{ }_{w} M_{k}{ }^{2}{ }^{2} \mathrm{k}}{6 \mathrm{~V} 2 \pi^{2} \Delta \mathcal{M}_{K}}$
$\left\langle\overline{K^{0}} /\left(\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right)^{2} / K^{0}\right\rangle=8 / 3 f^{2}{ }_{K} M^{2}{ }_{K} B_{K}$

$B^{0}-B^{0}$ mixing

$$
\left.\begin{array}{rl}
H=\left(\begin{array}{ll}
\mathrm{H}_{11} & \mathrm{H}_{12} \\
\mathrm{H}_{21}
\end{array}\right) \\
\mathrm{H}_{22}
\end{array}\right)
$$

Direct CP violation: decay

$\left|K_{L}\right\rangle=\mid K_{2}{ }^{\prime}{ }_{\mathrm{CP}}=-1$

Complex $\Delta S=1$ effective coupling

$$
\mathcal{L}^{C P}=\mathcal{L}^{\Delta \mathrm{F}=0}+\mathcal{L}^{\Delta \mathrm{F}=1}+\mathcal{L}^{\Delta \mathrm{F}=2}
$$

$\Delta F=0 \quad d_{e}<1.510^{-27}$ e cm $\quad d_{\mathbb{N}}<6.310^{-26}$ e cm
$\Delta \mathrm{F}=1 \quad \varepsilon^{\prime} / \varepsilon$
$+B$ decays (see later)

$$
\Delta \mathrm{F}=\mathbf{2} \quad \varepsilon \quad \text { and } \quad \mathrm{B} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}
$$

The extraordinary progress of the experimental measurements requires accurate theoretical predictions

Precision flavor physics requires the control of hadronic effects for which lattice QCD simulations are essential

$$
Q^{E X P}=V_{C K M}\langle F| \hat{O}|I\rangle
$$

$Q^{E X P}=\sum_{i} C_{S M}^{i}\left(M_{W}, m_{t}, \alpha_{s}\right)\langle F| \hat{O}_{i}|I\rangle+\sum_{i^{\prime}} C_{\text {Beyond }}^{i^{\prime}}\left(\tilde{m}_{\beta}, \alpha_{s}\right)\langle F| \hat{O}_{i^{\prime}}|I\rangle$
BSM
What can be computed and what cannot be computed

Leptonic (π, K, D, B)

(some) Radiative and Rare long distance effects
(also $K->\pi l^{+}$-)

Non-leptonic B-> $\pi \pi, K \pi$, etc. No!

but only below the inelastic threshold
(may be also 3 body decays)

type 1

type

type 4

Neutral meson mixing (local)

+ some long distance contributions to K and D neutral meson mixing + short distance contributions to $B->K^{(*)} l^{+} l^{-}$

INCLUSIVE DECAYS ONTHE LATTICE

Inclusive processes impractical to treat directly on the lattice. Vacuum current correlators computed in euclidean space-time are related to $e^{+} e^{-} \rightarrow$ hadrons or τ decay via analyticity. In our case the correlators have to be computed in the B meson, but analytic continuation more complicated: two cuts, decay occurs only on a portion of the physical cut.

While the lattice calculation of the spectral density of hadronic correlators is an illposed problem, the spectral density is accessible after smearing
Hansen, Meyer, Robaina, Hansen, Lupo,Tantalo, Bailas, Hashimoto, Ishikawa

LATTICE vs OPE

$m_{b}^{k i n}(\mathrm{JLQCD})$	2.70 ± 0.04
$\bar{m}_{c}(2 \mathrm{GeV})(\mathrm{JLQCD})$	1.10 ± 0.02
$m_{b}^{k i n}(\mathrm{ETMC})$	2.39 ± 0.08
$\bar{m}_{c}(2 \mathrm{GeV})(\mathrm{ETMC})$	1.19 ± 0.04
μ_{π}^{2}	0.57 ± 0.15
ρ_{D}^{3}	0.22 ± 0.06
$\mu_{G}^{2}\left(m_{b}\right)$	0.37 ± 0.10
$\rho_{L S}^{3}$	-0.13 ± 0.10
$\alpha_{s}^{(4)}(2 \mathrm{GeV})$	0.301 ± 0.006

OPE inputs from fits to exp data (physical mb), HQE of meson masses on lattice

I704.06I05, J.Phys.Conf.Ser. II37 (2019) I, 0I 2005

We incluce $O\left(1 / m_{b}^{3}\right)$ and $O\left(\alpha_{s}\right)$ terms Hard scale $\sqrt{m_{c}^{2}+\mathbf{q}^{2}} \sim 1-1.5 \mathrm{GeV}$ We do not expect OPE to work at high $|\mathbf{q}|$

Twisted boundary conditions allow
for any value of \vec{q}^{2}
Smaller statistical uncertainties

Evaluating hadronic amplitudes on the lattice through the spectral representation

Giuseppe Gagliardi, INFN Sezione di Roma Tre

R. Frezzotti, V. Lubicz, G. Martinelli, F. Mazzetti, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo

ETMC meeting, 8-10 February 2023, Bern.
INFN

Gagliardi - Pisa February 2023

Radiative decays

$D_{s}^{ \pm} \longrightarrow l^{\prime+} l^{\prime-} l^{ \pm} \nu_{l}$ decays

$$
\text { The } P^{+} \equiv D \gamma^{5} U \rightarrow l^{\prime+} l^{\prime-} l^{+} \nu_{l} \text { decays }
$$

- Diagram (b) is perturbative, only QCD input is decay constant f_{P}.
- Diagram (a) is non-perturbative. Virtual photon γ^{*} emitted from either a U-type or a D-type quark line. For $P^{+}=D_{s}^{+}: U=c, D=s$.

Non-perturbative QCD contribution encoded in the hadronic tensor

$$
H_{W}^{\mu \nu}(k, \boldsymbol{p})=\int d^{4} x e^{i k \cdot x}\langle 0| T\left[J_{\mathrm{em}}^{\mu}(x) J_{W}^{\nu}(0)\right]|P(\boldsymbol{p})\rangle, \quad W=V, A
$$

- $k=\left(E_{\gamma}, \boldsymbol{k}\right)$ is photon 4-momentum, \boldsymbol{p} is P-meson 3-momentum.
- We neglect $\mathrm{SU}(3)$-vanishing quark-line disconnected diagrams.
$\sin 2 \beta$ is measured directly from $B \rightarrow J / \psi K_{s}$ decays at Babar \& Belle

$$
\mathcal{A}_{J / \psi K_{s}}=\frac{\Gamma\left(B_{d}^{0} \rightarrow J / \psi K_{s}, t\right)-\Gamma\left(\bar{B}_{d}^{0} \rightarrow J / \psi K_{s}, t\right)}{\Gamma\left(B_{d}{ }^{0} \rightarrow J / \psi K_{s}, t\right)+\Gamma\left(\bar{B}_{d}{ }^{0} \rightarrow J / \psi K_{s}, t\right)}
$$

$$
\mathcal{A}_{J / \psi K_{s}}=\sin 2 \beta \quad \sin \left(\Delta m_{d} \mathrm{t}\right)
$$

DIFFERENT LEVELS OF THEORETICAL UNCERTAINTIES (STRONG INTERACTIONS)

1) First class quantities, with reduced or negligible uncertainties

$$
A_{C P}\left(B \rightarrow J / \psi K_{s}\right) \underset{K^{0} \rightarrow \pi^{0} v \bar{v}}{\gamma \text { from } B \rightarrow D K}
$$

2) Second class quantities, with theoretical errors of $O(10 \%)$ or less that can be reliably estimated

$$
\begin{aligned}
\varepsilon_{K} & \Delta M_{d s} \\
\Gamma(B \rightarrow c, u), & K^{+} \rightarrow \pi^{+} v \bar{v}
\end{aligned}
$$

3) Third class quantities, for which theoretical predictions are model dependent (BBNS, charming, etc.)
In case of discrepacies we cannot tell whether is new physics or we must blame the model

$$
\begin{aligned}
& B \rightarrow K \pi \quad B \rightarrow \pi^{0} \pi^{0} \\
& B \rightarrow \phi K_{s}
\end{aligned}
$$

Flavour Physics

1963: Cabibbo Angle 1964: CP violation in K decays * 1970 GIM Mechanism
1973: CP Violation needs at least three quark families (CKM) * 1975: discovery of the tau lepton $3^{\text {rd }}$ lepton family *
1977: discovery of the b quark $3^{\text {rd }}$ quark family *

2003/4: CP violation in B meson decays

* Nobel Prize
- the tiny branching ratio of the decay $K_{L} \rightarrow \mu^{+} \mu^{-}$ led to the prediction of the charm quark to suppress FCNCs (Glashow, Iliopoulos, Maiani 1970)
- the measurement of the frequency of kaon anti-kaon oscillations allowed a successful prediction of the charm quark mass
(Gaillard, Lee 1974)
(direct discovery of the charm quark in 1974 at SLAC and BNL)
- the observation of CP violation in kaon anti-kaon oscillations led to the prediction of the 3rd generation of quarks (Kobayashi, Maskawa 1973)
- the measurement of the frequency of $B-\bar{B}$ oscillations allowed to predict the large top quark mass (various authors in the late 80's)
(direct discovery of the bottom quark in 1977 at Fermilab)
(direct discovery of the top quark in 1995 at Fermilab)

Recent developments in Flavor physics, the Unitarity Fit, Anomalies

(Much ado about nothing) and all that

Guido Martinelli
INFN Sezione di Roma Universita La Sapienza

Dipartimento di Fisica
SAPIENZA
UNIVERSITÀ DI ROMA
Monopoli 20 September 2023

M.Bona, M. Ciuchini, D. Derkach, F. Ferrari, E. Franco, V. Lubicz, G. Martinelli, D. Morgante, M. Pierini, L. Silvestrini, S. Simula, C. Tarantino, V. Vagnoni, M. Valli, and L.Vittorio

- General introduction to the Unitary Triangle Fit
- SM Analysis
- Tensions and unknown
- Future directions, new/old ideas
- Conclusion

New UTfit Analysis of the Unitarity Triangle in the Cabibbo-Kobayashi-Maskawa scheme

Rend.Lincei Sci.Fis.Nat. 34 (2023) 37-57 arXiv:2212.03894

Thanks to
M. Bona, A. Di Domenico, C. Kelly, V. Lubicz, C. Sachrajda, L. Silvestrini, S. Simula, L. Vittorio

Flavor physics in the Standard Model

In the SM, the quark mass matrix, from which the CKM matrix and Q violation originate, is determined by the coupling of the Higgs boson to fermions.

$$
\mathcal{L}^{\text {quarks }}=\mathcal{L}^{\text {kinetic }}+\mathcal{L}^{\text {gauge }}+\mathcal{L}^{\text {Yukawa }}
$$

CP and symmetry breaking are striclty correlated

$$
\mathcal{L}\left(\Lambda_{\text {Fermi }}\right)=\mathcal{L}\left(\Lambda, H, H^{\dagger}\right)+\mathcal{L}^{\text {kin }}+\mathcal{L}_{S M}^{\text {gauge }}+\mathcal{L}_{S M}^{Y \text { ukawa }}+\frac{\mathcal{L}_{5}}{\Lambda}+\frac{\mathcal{L}_{6}}{\Lambda^{2}}+\ldots
$$

EWSB has many accidental simmetries
may violate accidental simmetries

STANDARD MODEL

 UNITARITY TRIANGLE ANALYSIS (Flavor Physics)- Provides the best determination of the CKM parameters; -Tests the consistency of the SM ("direct" vs "indirect" determinations) @ the quantum level;
-Provides predictions for SM observables (in the past for example $\sin 2 \beta$ and Δm_{S})
- It could lead to new discoveries (CP violation, Charm, !?)
-The discovery potential of precision flavor physics should not be underestimated

30 years of UT fit

© Since early ' 90 s, the UT framework has been established to probe CP violation in the flavor sector
© $\sin 2 \mathrm{~b}$ (CPV in $B_{d} \bar{B}_{d}$ mixing) the reference quantity
o very loose predictions once its value

o jump in accuracy ~ '95, when the first full statistical analysis was attempted, strongly benefiting of the first determination of the top mass. The UT analysis was born, predicting a few still unknown quantities

$$
\text { © } \sin 2 \beta=0.65 \pm 0.12
$$

© In 2000, Rome and Orsay/Genova groups (running similar fits) joined forces. This was the beginning of the UTfit collaboration

Courtesy by M. Pierini

2000 CKM-TRIANGLE ANALYSIS
A Critical Review with Updated Experimental Inputs and Theoretical Parameters
M. Ciuchini ${ }^{(a)}$, G. D'Agostini ${ }^{(b)}$, E. Franco ${ }^{(b)}$, V. Lubici ${ }^{(\mathrm{a})}$, G. Martinelli(${ }^{(b)}$, F. Parodi $i^{(c)}$, P. Roudeau ${ }^{(b)}$ and A. Stocchi ${ }^{(6)}$

Absence of FCNC at tree level (\& GIM suppression of FCNC @loop level)

Almost no CP violation at tree level
Flavour Physics is extremely sensitive to New Physics (NP)

In competition with
Electroweak Precision
(1)
(d) Measurements

WHY RARE DECAYS ?

Rare decays are a manifestation of broken (accidental) symmetries e.g. of physics beyond the Standard Model

Proton decay baryon and lepton number conservation
$\mu->e+\gamma$
lepton flavor number
$v_{i} \quad->\quad v_{k}$ found!

$$
\mathcal{B}(\mu \rightarrow e \gamma) \sim \alpha \frac{m_{\nu}^{4}}{m_{W}^{4}} \sim 10^{-52}
$$

RARE DECAYS WHICH ARE ALLOWED IN THE STANDARD MODEL

FCNC:
$\mathrm{q}_{\mathrm{i}} \rightarrow \mathrm{q}_{\mathrm{k}}+\mathrm{v} \overline{\mathrm{v}}$
$\mathrm{q}_{\mathrm{i}} \quad \rightarrow \mathrm{q}_{\mathrm{k}}+\mathrm{l}^{+} \mathrm{l}^{-}$
$\mathrm{q}_{\mathrm{i}} \quad->\mathrm{q}_{\mathrm{k}}+\gamma$
these decays occur only via loops because of GIM and are suppressed by CKM

THUS THEY ARE SENSITIVE TO NEW PHYSICS

Flavor Changing Neutral Currents in the SM

In the SM, flavor changing neutral currents (FCNCs) are absent at the tree level

FCNCs can arise at the loop level they are suppressed by loop factors and small CKM elements

(a)
(d)

$$
G \sim \frac{1}{16 \pi^{2}} \frac{g^{4}}{m_{W}^{2}} \frac{m_{t}^{2}}{m_{W}^{2}} V_{t b} V_{t s}^{*}+\frac{C_{\mathrm{NP}}}{\Lambda_{\mathrm{NP}}^{2}}
$$

\rightarrow measuring low energy flavor observables gives information on new physics flavor couplings and the new physics mass scale

$\mathrm{B}^{0}-\overline{\mathrm{B}^{0}}$ mixing

$$
\begin{aligned}
& H=\left(\begin{array}{ll}
\mathrm{H}_{11} & \mathrm{H}_{12} \\
\mathrm{H}_{21} & \mathrm{H}_{22}
\end{array}\right) \text { } \\
& \propto\left(\overline{\left.\mathbf{d} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathbf{b}\right)^{2}} \begin{array}{c}
\begin{array}{c}
\text { Hadronic } \\
\text { matrix } \\
\text { etement }
\end{array} \\
\Delta m_{d, s}=\frac{\mathrm{G}_{\mathrm{F}}^{2} \mathrm{M}^{2}{ }_{\mathrm{W}}}{16 \pi^{2}} \mathrm{~A}^{2} \lambda^{6} \mathrm{~F}_{\mathrm{tt}}\left(\frac{\mathrm{~m}_{\mathrm{t}}^{2}}{\mathrm{M}^{2}{ }_{\mathrm{W}}}\right)\langle\mathrm{O}\rangle
\end{array}\right.
\end{aligned}
$$

In general the mixing mass matrix of the SQuarks (SMM) is not diagonal in flavour space analogously to the quark case We may either Diagonalize the SMM
FCNC $\underbrace{z, \tilde{\gamma}, \tilde{g}^{j}}$
or Rotate by the same matrices

the SUSY partners of the u- and d- like quarks
$\left(Q_{L}{ }^{\mathrm{j}}\right)^{\prime}=\mathbf{U}^{\mathrm{ij}}{ }_{\mathrm{L}} \mathrm{Q}_{\mathrm{L}}{ }_{\mathrm{L}}$

In the latter case the Squark Mass Matrix is not diagonal

a)

c)

d)

$$
\left(m_{\mathrm{Q}}^{2}\right)_{i j}=m_{\text {average }}^{2} \mathbf{1}_{i j}+\Delta m_{i j}^{2} \quad \delta_{i j}=\Delta m_{i j}^{2} / m_{\text {average }}^{2}
$$

Sensitivity to New Physics from Flavor

I

Approximate LHC direct reach

$\mathrm{N}(\mathrm{N}-1) / 2$

$$
\mathrm{N}=3 \quad 3 \text { angles }+1 \text { phase } \quad \mathrm{KM}
$$

the phase generates complex couplings i.e. CP violation
6 masses +3 angles +1 phase $=10$ parameters

The Unitarity Triangle Analysis

- Flavor-changing processes and CP violation in the SM ruled by 4 parameters in the 3×3 CKM (unitary) matrix

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

$\bigcirc A, \lambda, \bar{\rho}$ and $\bar{\eta}$

$$
\bar{\rho}=\rho\left(1-\lambda^{2} / 2+\ldots\right) \quad \bar{\eta}=\eta\left(1-\lambda^{2} / 2+\ldots\right)
$$

- Small value sin of Cabibbo angle (λ) makes the CKM matrix close to diagonal
- Unitarity implies relations between elements, that can be represented as a triangle in a plane
$\sin \theta_{12}=\lambda$
$\sin \theta_{23}=A \lambda^{2}$
$\sin \theta_{13}=A \lambda^{3}(\rho-i \eta)$

$$
\begin{array}{ll}
\lambda \sim 0.2 & A \sim 0.8 \\
\eta \sim 0.2 & \rho \sim 0.3
\end{array}
$$

UT constraints

redundancy is the big strength of the UT analysis one can remove a subset of inputs and still determine the CKM one can exclude $\eta=0$ using only CP conserving processes

What's new for EPS23

O Theory updates:

- New $\mathrm{V}_{\text {ud }}$ extraction from neutron decays, following V. Cirigliano et al. arXiv:2306.03138
- New lattice values for masses

- New lattice form factors for exclusive

$$
b \rightarrow q \ell \nu
$$

© Experiment updates:
All masses computed in $\overline{\mathrm{MS}}$ and averaged with PDG scale factors

- New $\sin 2 \beta$ by LHCb
- New γ by LHCb
- New a

What's new for EPS23: $\sin (2 \beta)$

- Averaged charmonium values
- New sin2 β from LHCb
© Average including correction due to Cabibbo-suppressed penguin contribution:
\bigcirc Most recent estimate $\Delta(\sin 2 \beta)=-0.1 \pm 0.1$
© Theoretical uncertainty comparable to experimental error

$\mathrm{UT}_{\text {fit }}$

What's new for EPS23

- Updated the bound on a with
© Bounds from $\pi \pi$ and $\rho \rho$ derived from PDG averages (including PDG rescaling of the error)
© Bound from $\rho \pi$ derived from same inputs used by HFLAV
© As usual, main difference wrt other combinations is in the treatment of the multiple solutions
© Profiling vs marginalization: in our case, multiple overlapping solutions counts more than a single solution when integrating out the other quantities (T, P, and strong phases)

More on a

Inputs are slighly different from what HFLAV because for the BR averages we use the PDG (with the error inflation if there is a tension), while HFLAV would use their averages without error inflation.
So the pipi BR inputs are slightly different. We also use the updated rhopi.

HFLAV

It seems that the reason why the combination falls on the pipi solution on the left of the rhorho peak (while the right solution would be just as probable and even not distinguishable) is due to the small bump from the rhopi distribution which instead goes to zero for the pipi solution on the right.

What's new for EPS23

© Determination combining all $\left.\left.\mathrm{D}^{(}\right) \mathrm{K}{ }^{(}\right)$modes

- Simultaneous extraction of γ and $D \bar{D}$ mixing parameters (which enter the BSM analysis)
O Detaitsare given in dedicatod talk by R/Di Palma on Frrday
© Tree-level determination
- Baseline determination of CP viglation in the SM, assuming BSM effects enter only at loop
- With $\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|$, allows for a roust fit of the CKM parameters in the SM, even in presence of new physics

$$
\begin{aligned}
& \bar{\rho}= \pm 0.163 \pm 0.024 \\
& \bar{\eta}= \pm 0.356 \pm 0.027
\end{aligned}
$$

Di Palma and Silvestrini in preparation

In this particular case sensitive to γ D^{0} and $\overline{\mathrm{D}}^{0}$ are involved

GLW (Gronau,London, Wyler) Method

$$
\left|D_{C P \pm}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|D^{0}\right\rangle \pm\left|\bar{D}^{0}\right\rangle\right)
$$

Look at $\mathrm{D}^{0}(\mathrm{CP})$ states

$$
\begin{aligned}
& \sqrt{2} A\left(B^{+} \rightarrow D_{o-c}^{0} K^{+}\right)=A\left(B^{+} \rightarrow D^{\circ} K^{+}\right)+A\left(B^{+} \rightarrow \vec{D}^{0} K^{+}\right) \quad \sqrt{2} A\left(B^{+} \rightarrow D_{C r_{-}}^{0} K^{+}\right)=A\left(B^{+} \rightarrow D^{0} K^{+}\right)-A\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right) \\
& \sqrt{2} A\left(B^{-} \rightarrow D_{c+}^{o}, K^{-}\right)=A\left(B^{-} \rightarrow D^{\circ} K^{-}\right)+A\left(B^{-} \rightarrow \bar{D}^{\circ} K^{-}\right) \quad \sqrt{2} A\left(B^{-} \rightarrow D_{c+-}^{\circ} K^{-}\right)=A\left(B^{-} \rightarrow D^{\prime} K^{-}\right)-A\left(B^{-} \rightarrow \bar{D} K^{-}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A_{C P \pm}=\frac{\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)-\Gamma\left(B^{-} \rightarrow D_{C P_{ \pm}}^{0} K^{-}\right)}{\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)+\Gamma\left(B^{-} \rightarrow D_{C P_{ \pm}}^{0} K^{-}\right)}=\frac{ \pm 2 r_{B} \sin \gamma \sin \delta_{B}}{1+r_{B}^{2} \pm 2 r_{B} \cos \gamma \cos \delta_{B}} \\
& R_{C P \pm}=\frac{\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)+\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)}{\Gamma\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)+\Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)}=1+r_{B}^{2} \pm 2 r_{B} \cos \gamma \cos \delta_{B}
\end{aligned}
$$

ADS (Atwood, Dunietz, Soni) Method (only Babar)

$$
\begin{aligned}
R_{A D S} & =\frac{\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{+}\right)} \\
& =r_{D C S}^{2}+r_{B}^{2}+2 r_{B} r_{D C S} \cos \gamma \cos \left(\delta_{B}+\delta_{D}\right) \\
A_{A D S} & =\frac{\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}\right)-\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}\right)+\Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)} \\
& =2 r_{B} r_{D C S} \sin \gamma \sin \left(\delta_{B}+\delta_{D}\right) / R_{A D S}
\end{aligned} \quad r_{D C S}=\left\lvert\, \frac{A\left(D^{0}\right)}{A(3.62 \pm 0.29) 10^{-3}}\right.
$$

What about $\mathrm{r}_{\mathrm{B}} ? \quad r_{B}=\left|\frac{A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)}{A\left(B^{-} \rightarrow D^{0} K^{-}\right)}\right|$

$$
\begin{aligned}
& r_{B}=|R B \times R C T|=\left|\frac{V_{u b} V_{c s}^{*}}{V_{c b} V_{u s}^{*}}\right|\left|\frac{C+A}{T+\bar{C}}\right|=\sqrt{\bar{\eta}^{2}+\bar{\rho}^{2}}\left|\frac{C+A}{T+\bar{C}}\right| \quad R B=0.36 \pm 0.04
\end{aligned}
$$

Evaluation can be done if Annihilation diagram is neglected $\quad R C T \approx \sqrt{\frac{B r\left(\bar{B} \rightarrow D^{0} \bar{K}^{0}\right)}{B r\left(B^{-} \rightarrow D^{0} K^{-}\right)}}=0.34 \pm 0.10 \quad r_{B}=0.12 \pm 0.04$
Beyond this approx. If $\mid \mathrm{A} / \mathrm{Cl} \sim 0.3$ (max?) (+- 30% according to the interference between A and C)

$$
\left.r_{B}=0.12 \pm 0.04(\text { stat }) \pm 0.04 \text { (theo. }\right)
$$

Conclusions : should be measured on data

Observable	$D K$	$D^{*} K$	$D K^{*}$
$A_{C P^{+}}($GLW $)$	0.22 ± 0.11	-0.14 ± 0.18	-0.07 ± 0.18
$A_{C P^{P}-(\text { GLW }}$	0.02 ± 0.12	0.26 ± 0.26	-0.16 ± 0.29
$R_{C P^{+}}($GLW $)$	0.91 ± 0.12	1.25 ± 0.20	1.77 ± 0.39
$R_{C P^{P}-(\text { GLW }}$	1.02 ± 0.12	0.94 ± 0.29	$0.76_{-0.33}^{+0.30}$
$R_{A D S}$	0.017 ± 0.009	$<0.16 @ 90 \% \mathrm{C} . \mathrm{L}$.	-
$A_{A D S}$	$0.49_{-0.46}^{+0.53}$	-	-
$r_{B}($ Dalitz)-Belle	$0.21 \pm 0.08 \pm 0.03 \pm 0.04$	$0.12_{-0.11}^{+0.16} \pm 0.02 \pm 0.04$	-
$\left.\gamma \gamma^{\circ}{ }^{\circ}\right]$ (Dalitz)-Belle	$68 \pm 15 \pm 13 \pm 11$	$75 \pm 57 \pm 11 \pm 11$	-

Tree level diagrams, not influenced by new physics

${ }^{70 \pm 2}$ Using also the Dalitz Plot Method

$$
\begin{aligned}
\gamma & {\left[{ }^{\circ}\right] }
\end{aligned}=60.3 \pm 6.8([47.0,74.2] \text { at } 95 \%) \text { indirect }-U T \text { fit }, \begin{aligned}
& 59.1 \pm 16.7 \cup-120.3 \pm 17.2 \\
& \gamma\left[{ }^{[}\right]
\end{aligned}=\left\{\begin{array}{l}
([24.7,97.9] \cup[-155.4,-82.7] \text { at } 95 \%) \text { direct }-D^{(*)} K^{(*)}
\end{array}\right.
$$

Only tree level processes

Table 2: Results for several UT parameters, obtained using the constraints from $\left|\frac{V_{c b s}}{V_{c b}}\right|$ and γ.

$$
\begin{gathered}
\alpha=(92.4 \pm 1.4)^{0} \\
\sin 2 \beta=0.703 \pm 0.014 \\
\beta=(22.46 \pm 0.68)^{0} \\
\gamma=(65.1 \pm 1.3)^{0} \\
\boldsymbol{A}=\mathbf{0 . 8 2 8} \pm \mathbf{0 . 0 1 1} \\
\boldsymbol{\lambda}=\mathbf{0 . 2 2 5 1 9} \pm \mathbf{0 . 0 0 0 8 3} \\
\mathbf{2 0 2 2}
\end{gathered}
$$

$$
K \rightarrow \pi \nu \bar{\nu}
$$

some old plots coming back to fashion:

2007 global fit e

As NA62 and KOTO are analysing

 data:

including $\mathrm{BR}\left(\mathrm{K}^{0} \rightarrow \pi^{0} v \bar{v}\right.$ SM central va

Courtesy by G. D'Ambrosio

2023 results

$$
\bar{\rho}=0.160 \pm 0.009 \quad \bar{\eta}=0.345 \pm 0.011
$$

CKM matrix is the dominant source of flavour mixing and CP violation

Unitarity Triangle analysis in the SM:

PROGRESS SINCE 1988

Experimental progress so impressive that we can fit the hadronic matrix elements (in the SM)

Standard Model Fit result

$$
\begin{aligned}
& \bar{\rho}=0.159 \pm 0.016 \\
& \bar{\eta}=0.339 \pm 0.010
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\rho}=0.173 \pm 0.012 \\
& \bar{\eta}=0.374 \pm 0.019 \\
& \hline
\end{aligned}
$$

December 2022

Some interesting configurations

compatibility plots

A way to "measure" the agreement of a single measurement with the indirect determination from the fit using all the other inputs: test for the

FIG. 5. Pull plots (see text) for $\sin 2 \beta$ (top-left), α (top-centre), γ (top-right), $\left|V_{u b}\right|$ (bottom-left) and $\left|V_{c b}\right|$ (bottom-right) inputs. The crosses represent the input values reported in Table $\mathbb{1}$. In the case of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ the x and the * represent the values extracted from exclusive and inclusive semilentonic decaus resnectivelu.

2023

Standard Model Fit compatibility

$V_{c b}$ and $V_{u b}$

from FLAG 2021
$\left|\mathrm{V}_{\mathrm{cb}}\right|(e x c l)=(39.44 \pm 0.63) 10^{-3}$
NEW (40.55 $\pm 0.46) 10^{-3} 0.005$ E
$\left|\mathrm{V}_{\mathrm{cb}}\right|($ incl $)=(42.16 \pm 0.50) 10^{-3}$
from Bordone et al.
~3.2 σ discrepancy
arXiv:2107.00604
$\mathrm{V}_{\mathrm{cb}}($ incl $)=(41.69 \pm 0.63) 10^{-3}$ from Bernlochner et al. arXiv:2205.10274

NEW $(3.64 \pm 0.16) 10^{-3}$
$|\mathrm{Vub}|(e x c l)=(3.74 \pm 0.17) 10^{-3}$
$\mathrm{V}_{\text {ub }} \mid($ incl $)=(4.32 \pm 0.29) 10^{-3}$
from GGOU HFLAV $2021 \sim 1.6 \sigma$ discrepancy adding a flat uncertainty covering the spread of central values

$$
\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|(L H C b)=(9.46 \pm 0.79) 10^{-2} \quad \text { NEW }(8.27 \pm 1.17) 10^{-2}
$$

$$
\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|(L H C b)=(7.9 \pm 0.6) 10^{-2}
$$

From Λ_{b}, excluded following FLAG guidelines
From global SM fit $\quad\left|\mathrm{V}_{\mathrm{cb}}\right|=(42.00 \pm 0.47) 10^{-3} \quad\left|\mathrm{~V}_{\mathrm{ub}}\right|=(3.715 \pm 0.093) 10^{-3}$
Utfit Prediction $V c b=(42.22 \pm 0.51) 10^{-3} \quad V u b=(3.70 \pm 0.11) 10^{-3}$

WORK IN PROGRESS

(G.M., S.Simula, L.Vittorio)

NEW	Vcb=	$(40.55 \pm 0.46) 10^{-3}$
EXCLUSIVE from B-> D^{*}	INCLUSIVE (42.16 $\pm 0.50) 10^{-3}(41.69 \pm 0.63) 10^{-3}$	

NEW Vub/Vcb $=(8.27 \pm 1.17) 10^{-2}$
 FLAG UNDERESTIMATES OF THE UNCERTAINTY
 The larger error reduces the correlation between Vub nd Vcb

G.Martinelli et al.: Updates on the determination of $\left|V_{c b}\right|, R\left(D^{*}\right)$ and $\left|V_{u b}\right| /\left|V_{c b}\right|$

Fig. 8. Available lattice results for the FFs $f_{0}\left(q^{2}\right)$ (left panel) and $f_{+}\left(q^{2}\right)$ (right panel) relevant for $B_{s} \rightarrow$ Kथ ν_{ℓ} decays. The RBC/UKQCD '6] (diamond), FNAL/MILC[31] (squares) and HPQCD [32, 33](circles).
Utfit Prediction $V c b=(42.21 \pm 0.51) 10^{-3}$

$$
V u b=(3.70 \pm 0.09) 10^{-3}
$$

FNAL/MILC

Mainly due to $F_{1}(w)$

$J L Q C D$

GM,S. Simula,L. Vittorio

The importance of $\left|V_{c b}\right|$

An important CKM unitarity test is the Unitarity Triangle (UT) formed by

$$
1+\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}+\frac{V_{t d} V_{t b}^{*}}{V_{c d} V_{c b}^{*}}=0
$$

V_{cb} plays an important role in UT

$$
\varepsilon_{K} \approx x\left|V_{c b}\right|^{4}+\ldots
$$

and in the prediction of FCNC:

$$
\propto\left|V_{t b} V_{t s}\right|^{2} \simeq\left|V_{c b}\right|^{2}\left[1+O\left(\lambda^{2}\right)\right]
$$

where it often dominates the theoretical uncertainty.
$\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}$ constrains directly the UT

Our ability to determine precisely $V_{c b}$ is crucial for indirect NP searches

Courtesy by Gambino

UT-fit Preliminary

- ε_{K} large Vcb
-B mixing with large
lattice matrix elements
smaller Vcb smallest 95.5\% interval(s) smallest 68.3\% interval(s) global mode mean and standard deviation

Power corrections to the CP-violation parameter ε_{K}
M. Ciuchini ${ }^{(a)}$, E. Franco $^{(b)}$, V. Lubicz $\left.{ }^{(c, a)}, \quad \varepsilon_{K}^{e x p}=2.228 \pm 0.011\right) \cdot 10^{-3}$
G. Martinelli ${ }^{(d, b)}$. L. Silvestrini ${ }^{(b)}$. C. Tarantino ${ }^{(c, a)}$

2021: an estimate from the $1 / m \mathrm{c}$ expansion of the effective Hamiltonian + UTfit

$$
\varepsilon_{K}=2.00(15) \times 10^{-3}
$$

Computing the long-distance contributions to ε_{K}

Ziyuan Mai
Columbia University, USA
bzyhty@gmail.com
Norman Christ* ${ }^{*}$
Columbia University, USA
E-mail: nhcephys.columbia.edu
RBC and UKQCD Collaborations

2015: a real
exploratory calculation
no physical masses, no
extrapolation to the continuum

$$
|\varepsilon|=(1.806(41)+0.891(11)+0.209(6)+0.112(13)) \times 10^{-3}=3.019(45) \times 10^{-3}
$$

$$
t t \quad u t_{S D} \quad u t_{L D} \quad \operatorname{Im}\left(A_{0}\right)
$$

e'le from RBC now in Utfit:
$e^{\prime} / e=15.2(4.7) \times 10^{-4}$

Courtesy by G. D'Ambrosio

Exclusive semileptonic $B \rightarrow\left\{D\left(^{*}\right), \pi\right\}$ decays through unitarity (and other developments)

Work in collaboration with M. Naviglio. S. Simula and L. Vittorio
(PRD '21 (2105.02497), PRD '21 (2105.07851), PRD '22 (2105.08674), 2109.15248, 2204.05925, 2202.10285)
See talk by A. Vaquero

Mr. Nosferatu
from Transylvania

The central role of the Form Factors (FFs) in excl. semil. B decays

- Production of a pseudoscalar meson (i.e. D, π):

$$
\frac{d \Gamma}{d w}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2} \eta_{E W}^{2}}{48 \pi^{3}} \frac{4 r m_{D}^{3}\left(m_{B}+m_{D}\right)^{2}\left(w^{2}-1\right)^{3 / 2}}{(1+r)^{2}}\left|f_{+}(w)\right|^{2}
$$

- Production of a vector meson (i.e. D^{*}):

$$
\frac{d \Gamma\left(B \rightarrow D^{*}(\rightarrow D \pi) \ell \nu\right)}{d w d \cos \theta_{\ell} d \cos \theta_{v} d \chi}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2} \eta_{E W}^{2}}{4(4 \pi)^{4}} 3 m_{B} m_{D^{*}}^{2} \sqrt{w^{2}-1}
$$

$$
H_{ \pm}(w)=f(w) \mp m_{B} m_{D^{*}} \sqrt{w^{2}-1} g(w) \quad \times B\left(D^{*} \rightarrow D \pi\right)\left\{\left(1-\cos \theta_{\ell}\right)^{2} \sin ^{2} \theta_{v}\left|H_{+}\right|^{2}\right.
$$

$$
+\left(1+\cos \theta_{\ell}\right)^{2} \sin ^{2} \theta_{v}\left|H_{-}\right|^{2}+4 \sin ^{2} \theta_{\ell} \cos ^{2} \theta_{v}\left|H_{0}\right|^{2}
$$

$$
H_{0}(w)=\frac{\mathcal{F}_{1}(w)}{\sqrt{m_{B}^{2}+m_{D}^{2}-2 m_{B} m_{D} w}}
$$

$$
-2 \sin ^{2} \theta_{\ell} \sin ^{2} \theta_{v} \cos 2 \chi H_{+} H_{-}
$$

$$
-4 \sin \theta_{\ell}\left(1-\cos \theta_{\ell}\right) \sin \theta_{v} \cos \theta_{v} \cos \chi H_{+} H_{0}
$$

$$
\left.+4 \sin \theta_{\ell}\left(1+\cos \theta_{\ell}\right) \sin \theta_{v} \cos \theta_{v} \cos \chi H_{-} H_{0}\right\},
$$

relation between the momentum transfer and the recoil

$$
q^{2}=m_{B}^{2}+m_{P}^{2}-2 m_{B} m_{P} w
$$

L. Vittorio (LAPTh \& CNRS, Annecy)

If the lepton is NOT massless? Two other FFs!
$f_{0}(w)$ (pseudoscalar), $P_{1}(w)$ (vector)

small q^{2} large discretization systematics

Semileptonic heavy-to-light meson decay on the lattice

$$
\begin{gathered}
L^{-1} \\
\text { finite box }
\end{gathered}<\text { physics of interest } \lll \begin{gathered}
a^{-1} \\
\text { lattice spacing }
\end{gathered}
$$

Kinematics: example $B \rightarrow \pi / v$

$$
q_{\max }^{2}=\left(m_{B}-m_{\pi}\right)^{2} \approx 26.4 \mathrm{GeV}^{2}
$$

Lowest Fourier modes on $L=4 \mathrm{fm}$ lattice

$\left\|\vec{n}^{2}\right\|$	0	1	2	3	4
E_{Π} / GeV	0.139	0.338	0.457	0.551	0.631
q^{2} / GeV^{2}	26.4	24.3	23.1	22.1	21.2

Analytic structure of the Form Factors

BGL approach

* the hadronic form factors corresponding to definite spin-parity can be represented as an expansion, originating from unitarity, analyticity and crossing symmetry, in terms of the conformal variable $\mathrm{z}(|z| \leq 1)$

$$
f_{+}\left(q^{2}\right)=\frac{1}{\sqrt{\chi_{1-}\left(q_{0}^{2}\right)}} \frac{1}{\phi_{+}\left(z\left(q^{2}\right), q_{0}^{2}\right) P_{+}\left(z\left(q^{2}\right)\right)} \sum_{n=0}^{\infty} a_{n} z^{n}\left(q^{2}\right) \quad z(t) \equiv \frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}} \quad \begin{aligned}
& t_{0} \rightarrow t_{-} \\
& t_{ \pm} \equiv\left(m_{B} \pm m_{D}\right)^{2}
\end{aligned}
$$

$\phi_{+}\left(z\left(q^{2}\right), q_{0}^{2}\right)=$ kinematical function $\quad\left(q_{0}^{2}=\right.$ auxiliary quantity $)$
$P_{+}\left(z\left(q^{2}\right)\right)=$ Blaschke factor including resonances below the pair-production threshold t_{+}
$\chi_{1-}\left(q_{0}^{2}\right)=$ transverse vector susceptibility $\equiv \frac{1}{2} \frac{\partial^{2}}{\partial\left(q_{0}^{2}\right)^{2}}\left[q_{0}^{2} \Pi_{1-}\left(q_{0}^{2}\right)\right]=\frac{1}{\pi} \int_{0}^{\infty} d s \frac{s \operatorname{Im} \Pi_{1^{-}}(s)}{\left(s-q_{0}^{2}\right)^{3}}$ calculable nonperturbatively from appropriate 2-point lattice correlators (see arXiv:2105.07851)

$$
\text { unitarity constraint: } \quad \sum_{n=0}^{\infty} a_{n}^{2} \leq 1
$$

BGL used by almost all the FF studies in the past (CLN)

BGL: frequentist fit

Input (eg lattice ff)

$$
\begin{aligned}
\mathbf{f}^{T} & =\left(\mathbf{f}_{+}, \mathbf{f}_{0}\right)^{T} \\
& =\left(f_{+}\left(q_{0}^{2}\right), f_{+}\left(q_{1}^{2}\right), \ldots, f_{+}\left(q_{N_{+}-1}^{2}\right), f_{0}\left(q_{0}^{2}\right), f_{0}\left(q_{1}^{2}\right), \ldots, f_{0}\left(q_{N_{0}-1}^{2}\right)\right)
\end{aligned}
$$

Output (BGL params) $\quad \mathbf{a}^{\top}=\left(\mathbf{a}_{+}, \mathbf{a}_{0}\right)^{T}=\left(a_{+, 0}, a_{+, 1}, \ldots, a_{+, K_{+}-1}, a_{0,1}, a_{0,2}, \ldots, a_{0, K_{0}-1}\right)$
Frequentist fit $\chi^{2}(\mathbf{a}, \mathbf{f})=(\mathbf{f}-Z \mathbf{a})^{T} C_{\mathbf{f}}^{-1}(\mathbf{f}-Z \mathbf{a})$

Frequentist result

$$
\mathbf{a}=\left(Z^{\top} C_{\mathbf{f}}^{-1} Z\right)^{-1} Z C_{\mathbf{f}}^{-1} \mathbf{f}, \quad C_{\mathbf{a}}=\left(Z^{\top} C_{\mathbf{f}}^{-1} Z\right)^{-1}
$$

- Z contains BGL ansatz and kinematic constraint
- Written here using constraint to eliminate $a_{0,0}$:

$$
a_{0,0}=\frac{B_{0}(0) \phi_{0}(0)}{B_{+}(0) \phi_{+}(0)} \sum_{k=0}^{K_{+}-1} a_{+, k} z(0)^{k}-\sum_{k=1}^{K_{0}-1} a_{0, k} z(0)^{k}
$$

Dispersion Matrix (DM) approach

* reappraisal and improvement of the method originally proposed by Bourrely et al. NPB '81 and Lellouch in NPB '96

$$
\begin{aligned}
& \left(\begin{array}{lllll}
<\phi f \mid \phi f> & <\phi f \mid g_{t}> & <\phi f \mid g_{t_{1}}> & \ldots & <\phi f \mid g_{t_{N}}> \\
<g_{t} \mid \phi f> & <g_{t} \mid g_{t}> & <g_{t} \mid g_{t_{1}}> & \ldots & <g_{t} \mid g_{t_{N}}>
\end{array}\right) \quad \text { inner product: }<g \left\lvert\, h>\equiv \frac{1}{2 \pi i} \int_{|z|=1} \frac{d z}{z} \bar{g}(z) h(z)\right. \\
& g_{t}(z) \equiv \frac{1}{1-\bar{z}(t) z} \\
& <g_{t}\left|\phi f>\equiv \phi\left(z, q_{0}^{2}\right) f(z) \quad<g_{t}\right| g_{t_{m}}>=\frac{1}{1-\bar{z}\left(t_{m}\right) z(t)}
\end{aligned}
$$

$\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{N}}$ are the N values of the squared 4-momentum transfer where the form factor f has been computed and t is its value where we want to compute $f(\mathrm{t})$

$$
\text { unitarity bound: }\langle\phi f \mid \phi f\rangle \equiv \frac{1}{2 \pi i} \int_{|z|=1} \frac{d z}{z}\left|\phi\left(z, q_{0}^{2}\right) f(z)\right|^{2} \leq \chi\left(q_{0}^{2}\right)
$$

in the case of interest $z_{i} \equiv z\left(t_{i}\right)$ and $\phi_{i} f_{i} \equiv \phi\left(z_{i}, q_{0}^{2}\right) f\left(t_{i}\right)$ are real numbers and the positivity of the inner product implies:

$$
\operatorname{det}[\overline{\mathscr{M}}]=\left|\begin{array}{ccccc}
\chi\left(q_{0}^{2}\right) & \phi f & \phi_{1} f_{1} & \ldots & \phi_{N} f_{N} \\
\phi f & \frac{1}{1-z^{2}} & \frac{1}{1-z_{1}} & \ldots & \frac{1}{1-z_{2}} \\
\phi_{1} f_{1} & \frac{1}{1-z_{1}} & \frac{1}{1-z_{1}^{2}} & \ldots & \frac{1}{1-z_{1} z_{N}} \\
\cdots & \cdots & \cdots & \ldots & \cdots \\
\phi_{N} f_{N} & \frac{1}{1-z_{N} z} & \frac{1}{1-z_{N} z_{1}} & \cdots & \frac{1}{1-z_{N}^{2}}
\end{array}\right| \geq 0
$$

* the explicit solution is a band of values: $\quad \beta-\sqrt{\gamma} \leq f(z) \leq \beta+\sqrt{\gamma}$

$$
\beta=\frac{1}{d(z) \phi(z)} \sum_{j=1}^{N} f_{j} \phi_{j} d_{j} \frac{1-z_{j}^{2}}{z-z_{j}} \quad \gamma=\frac{1}{d^{2}(z) \phi^{2}(z)} \frac{1}{1-z^{2}}\left[\chi-\sum_{i, j=1}^{N} f_{i} f_{j} \phi_{i} \phi_{j} d_{i} d_{j} \frac{\left(1-z_{i}^{2}\right)\left(1-z_{j}^{2}\right)}{1-z_{i} z_{j}}\right]
$$

χ, f_{i} : nonperturbative input quantities,
$\phi(z), d(z), \phi_{i}, d_{i}$: kinematical coefficients depending on z_{i}

* unitarity is satisfied when $\gamma \geq 0$, which implies: $\quad \chi \geq \sum_{i, j=1}^{N} f_{i} f_{j} \phi_{i} \phi_{j} d_{i} d_{j} \frac{\left(1-z_{i}^{2}\right)\left(1-z_{j}^{2}\right)}{1-z_{i} z_{j}}$
*** this is the parameterization-independent unitarity test of the set of input data $\left\{f_{j}\right\}^{* * *}$
* important feature: when $z \rightarrow z_{j}$ one has $\beta \rightarrow f_{j}$ and $\gamma \rightarrow 0$, i.e. the DM band collapses to f_{j} for $z=z_{j}$
for any given set of input data the DM approach reproduces exactly the known data and it allows to extrapolate the form factor in the whole kinematical range in a parameterization-independent way providing a band of values representing the results of all possible BGL fits satisfying unitarity and passing through the known points (important for estimating uncertainties)
* the DM band represents a uniform distribution which is combined with the multivariate distribution of the input data $\left\{f_{j}\right\}$ to generate the final band for $f(z)$
* kinematical constraint(s) can be easily and rigorously implemented in the DM approach (see for details arXiv:2105.02497)

Dispersive matrix method results

- plots from JHEP 080222022^{16} top: $B \rightarrow \pi$ RBC-UKQCD 15^{1} FNAL-MILC 15^{14} bottom: $B s \rightarrow K$ HPQCD 14 ${ }^{17}$, RBC-UKQCD 15¹, FNAL-MILC $19{ }^{15}$
- χ 's from lattice-computed current-current correlators
- indirect implementation of kinematic constraint
- use input data from different sources by combining form-factors at common q^{2} points
- lacks frequentist inerpretation

Di Carlo et al PRD104 054502 2021 ${ }^{18}$; Martinelli et al PRD104 0945122021^{19}, PRD105 0345032022^{20}, JHEP 08 0222022^{16}, PRD106 0930022022^{21}

Bayesian BGL form factor fit

- Frequentist fit
- $N_{\text {dof }}=N_{\text {data }}-N_{\text {params }} \geq 1$ means in practice truncation of z expansion at low order
- induced systematic
- Bayesian fit [RBC-UKQCD 2303.1128022; JF, Jüttner, Tsang 2303.11285 ${ }^{13}$]
- aim to fit full z expansion (no truncation)
- need regulator to control higher-order coetficients - use unitarity constraint
- compute (functions of) z-expansion coefficients as expectation values

$$
\langle g(\mathbf{a})\rangle=N \int d \mathbf{a} g(\mathbf{a}) \pi\left(\mathbf{a} \mid \mathbf{f}, C_{\mathbf{f}}\right) \pi_{\mathbf{a}}
$$

with probability for parameters given model and data

$$
\pi\left(\mathbf{a} \mid \mathbf{f}, C_{\mathbf{f}}\right) \propto \exp \left(-\frac{1}{2} \chi^{2}(\mathbf{a}, \mathbf{f})\right) \quad \text { where } \quad \chi^{2}(\mathbf{a}, \mathbf{f})=(\mathbf{f}-Z \mathbf{a})^{T} C_{\mathbf{f}}^{-1}(\mathbf{f}-Z \mathbf{a})
$$

and prior knowledge from unitarity constraint

$$
\pi_{\mathrm{a}} \propto \theta\left(1-\left|\mathbf{a}_{+}\right|_{\alpha}^{2}\right) \theta\left(1-\left|\mathbf{a}_{0}\right|_{\alpha}^{2}\right)
$$

- use MC integration: sample a from multivariate normal and drop samples incompatible with unitarity
- in practice, low probability to satisfy unitarity when K_{+}and K_{0} large
- modify

$$
\pi\left(\mathbf{a} \mid \mathbf{f}_{p}, C_{\mathbf{f}_{p}}\right) \pi_{\mathbf{a}}\left(\mathbf{a}_{p} \mid M\right) \propto \theta(\mathbf{a}) \exp \left(-\frac{1}{2}\left(\mathbf{f}_{p}-Z \mathbf{a}\right)^{T} C_{\mathbf{f}_{p}}^{-1}\left(\mathbf{f}_{p}-Z \mathbf{a}\right)-\frac{1}{2} \mathbf{a}^{T} \frac{M}{\sigma^{2}} \mathbf{a}\right)
$$

- choose M such that $\mathbf{a}^{T} M \mathbf{a} \leq 2$ in presence of kinematic constraint
- draw random number
- correct with accept-reject with probability

$$
p \leq \frac{\exp \left(-1 / \sigma^{2}\right)}{\exp \left(-\mathbf{a}^{T} \frac{M}{2 \sigma^{2}} \mathbf{a}\right)}
$$

A recent counter-check of the DM method

Results III: Bayesian Inference vs Dispersive Matrix Method

Application to $B_{s} \rightarrow K$: identical results!

- BI and DM produce equivalent results
- BI simpler to implement + easily to combine with multiple data sets
- BI provides numerical value of the coefficients

problems with lattice calculations vs experimental data

Why not doing a global fit of lattice and exp. data

Vote that one can use also experimental data (in addition to the LQCD ones) to constrain the shape of the FFs...

$$
d \Gamma / d x, \quad x=w, \cos \theta_{l}, \cos \theta_{v}, \chi
$$

Belle Coll.: arXiv:1702.01521, PRD ‘19 [arXiv:1809.03290]
Let us see this in detail: let us consider the BGL fits performed by FNAL/MILC Collaborations in EPJC ' 22 arXiv:2105.14019

L. Vittorio (LAPTh \& CNRS, Annecy) ${ }^{* * *}$ slope differences between exp's and theory \rightarrow bias on $\left|V_{c b}\right|^{\text {joint fit }}$? ${ }^{* * *}$

State-of-the-art of the semileptonic $B \rightarrow\left\{D\left(^{*}\right), \pi\right\}$ decays

Two critical issues

Overview over predictions for $R\left(D^{*}\right)$

May 2023

SU(3) breaking effects need further investigation

see Ludovico's slides in discussion session

	DM	HFLAV '19
$R(D)$	$0.296(8)$	$0.340(27)(13)$
$R\left(D^{*}\right)$	$0.275(8)$	$0.295(11)(8)$
$R\left(D_{s}\right)$	$0.298(5)$	
$R\left(D_{s}{ }^{*}\right)$	$0.250(6)$	

reduced tensions in both $\left|V_{c b}\right|,\left|V_{u b}\right|$ and $R\left(D^{(*)}\right)$ when theory and experiments are not fitted simultaneously

RADIATIVE CORRECTIONS

The accuracy of lattice calculations of the hadron spectrum (and hence of the quark masses) and of the decay constants and form factors is such that isospin breaking and em effects cannot be neglected anymore:

$$
\begin{aligned}
& \mathrm{f}_{\pi}=130.2(0.8) \mathrm{MeV} \varepsilon=0.6 \% \mathrm{f}_{\mathrm{K}}=155.7(0.3) \mathrm{MeV} \varepsilon=0.2 \% \\
& \mathrm{f}_{\mathrm{K}} / \mathrm{f}_{\pi}=1.1932(19) \varepsilon=0.16 \% \quad \mathrm{~F} / \mathrm{K} \pi(0)=0.9698(17) \varepsilon=0.18 \%
\end{aligned}
$$

A remark on useful and useless precision of lattice calculations:

1) ε_{K} and long distance charm contributions
2) isospin breaking and electromagnetic corrections to f_{K} and f_{π}

Radiative corrections to neutron decay, the Sacred Graal

$$
\Gamma\left(P S^{+} \rightarrow \ell^{+} \nu_{\ell}\right)=\frac{G_{F}^{2}}{8 \pi}\left|V_{q_{1} q_{2}}\right|^{2} m_{\ell}^{2}\left(1-\frac{m_{\ell}^{2}}{m_{P S^{+}}^{2}}\right) M_{P S^{+}} f_{P S}^{2} S_{e w}\left(1+\delta R_{I B}^{P S}+\delta R_{Q E D}^{P S}\right)
$$

$f_{P S}$: leptonic decay constant in isoQCD ($m_{u}=m_{d}, e_{f}=0$)
$\delta R_{I B}^{P S}:$ strong isospin breaking correction $\propto O\left[\left(m_{d}-m_{u}\right) / \Lambda_{Q C D}\right] \simeq O(1 \%)$
$\delta R_{Q E D}^{P S}: \mathrm{QED}$ correction $\propto O\left(\alpha_{e m}\right) \simeq O(1 \%)$

* lattice determinations of $f_{P S}$ have reached an accuracy below the percent level
need of determining $\delta R_{I B}^{P S}$ and $\delta R_{Q E D}^{P S}$ on the lattice
* the infrared (IR) problem: only $\Gamma\left(\Delta E_{\gamma}\right)=\Gamma_{0}+\Gamma_{1}\left(\Delta E_{\gamma}\right)$ is IR finite [Block\&Nordsiek'37] $\quad \Gamma_{n}: \mathrm{n}$ photons in the fi RM123+Soton strategy: $\quad \Gamma\left(\Delta E_{\gamma}\right)=\lim _{V \rightarrow \infty}\left[\Gamma_{0}-\Gamma_{0}^{p t}\right]+\lim _{V \rightarrow \infty}\left[\Gamma_{0}^{p t}+\Gamma_{1}\left(\Delta E_{\gamma}\right)\right] \quad \mathrm{pt}=$ point-like IR finite IR finite

PRD '15 arXiv: 1502.00257	for
PRD '17 arXiv:1611.08497	(FVEs)
PRL '18 arXiv:1711.06537	(π and K)
PRD '19 arXiv:1904.08731	(π and K)

$\lim _{V \rightarrow \infty}\left[\Gamma_{0}-\Gamma_{0}^{p t}\right]$ on the lattice $\lim _{m_{r} \rightarrow 0}\left[\Gamma_{0}^{p t}+\Gamma_{1}^{p t}\left(\Delta E_{\gamma}\right)\right]$ within the pt apprc

From f_{K} / f_{π} and $f^{K \pi}(0)$ we can extract $V_{u s} / V_{u d}$ and $V_{u s}$

Figure 10: The plot compares the information for $\left|V_{u d}\right|,\left|V_{u s}\right|$ obtained on the lattice for $N_{f}=2+1$ and $N_{f}=2+1+1$ with $\left|V_{u d}\right|$ extracted from nuclear β transitions Eqs. (71) and (72). The dotted line indicates the correlation between $\left|V_{u d}\right|$ and $\left|V_{u s}\right|$ that follows if the CKM-matrix is unitary. For the $N_{f}=2$ results see the 2016 edition [3].

Including radiative corrections

- with this method, our result for

$$
\begin{aligned}
& \Gamma_{P}(E)=\Gamma_{P}^{0}\left\{1+\delta R_{P}(E)\right\}, \\
& \delta R_{K \pi}=\delta R_{K}\left(E_{K}^{m a x}\right)-\delta R_{\pi}\left(E_{\pi}^{\max }\right)
\end{aligned}
$$

is the following

$$
\begin{aligned}
& \delta \mathbf{R}_{\mathrm{K} \pi} \\
& =-0.0122(10)^{\text {st }}(2)^{\text {tun }}(8)^{\chi}(5)^{L}(4)^{a}\left(\Gamma^{\wedge} a Q E D\right. \\
& =-0.0122(16)
\end{aligned}
$$

ETMC gauge configurations

$$
n_{f}=1+1+1+1
$$

this can (remember the caveat concerning the definition

$$
a \geq 0.0619(18) \mathrm{fm}
$$ of QCD) be compared with the result currently quoted by the PDG and obtained in v.cirigliano and h.neufeld, PLB 700 (2011)

$$
\delta R_{K \pi}=-0.0112(21)
$$

$$
\frac{\left|V_{u s}\right|}{\left|V_{u d}\right|}=0.23134(24)_{\exp }(30)_{\mathrm{th}}=0.23134(38)
$$

$$
\left|V_{u s}\right|=0.22538(24)_{\exp }(30)_{\mathrm{th}}=0.22538(38)
$$

Real photon emission

KLOE experiment $K \rightarrow e \nu_{e} \gamma$

$$
\Delta R^{\text {exp,i}}=\int_{E_{\gamma}^{i}}^{E_{\gamma}^{i+1}} d E_{\gamma} \frac{1}{\Gamma_{K \mu 2[\gamma]}}\left[\frac{d \Gamma\left(K_{e 2 \gamma}\right)}{d E_{\gamma}}\right]_{p_{e}>200 \mathrm{MeV} \text { (kinematical cut due to } \mathrm{K}_{\mathrm{e} 3} \text { decays) }} \quad \rightarrow \Delta R^{p t, i}+\Delta R^{S D, i}+\Delta R^{I N T, i}
$$

five bins : $E_{\gamma}^{i}=\{10,50,100,150,200,250\} \mathrm{MeV}$ $E_{\gamma}^{\max } \simeq 250 \mathrm{MeV}$

$\Delta R^{p t, i}$: relevant in the first bin only $\Delta R^{I N T, i}$: negligible $\Delta R^{S D, i} \propto\left[F_{V}\left(x_{\gamma}\right)+F_{A}\left(x_{\gamma}\right)\right]^{2}$ $\operatorname{ChPT} O\left(e^{2} p^{4}\right): F_{V}\left(x_{\gamma}\right)=\frac{m_{P S}}{4 \pi^{2} f_{P S}}$

$$
F_{A}\left(x_{\gamma}\right)=\frac{8 m_{P S}}{f_{P S}}\left(L_{9}^{r}+L_{10}^{r}\right)
$$

$F^{+}\left(x_{\gamma}\right)=F_{V}\left(x_{\gamma}\right)+F_{A}\left(x_{\gamma}\right) \simeq 0.123 \pm 0.018$

FIG. 1. Left panel: comparison of the KLOE experimental data $\Delta R^{\exp , i}[9]$ (red circles) with the theoretical predictions $\Delta R^{\text {th, }, i}$, (blue squares) evaluated with the vector and axial form factors of Ref. [8] given in Eqs. (13)-(17), for the 5 bins (see Table IV). The green diamonds correspond to the prediction of ChPT at order $\mathcal{O}\left(e^{2} p^{4}\right)$, based on the vector and axial form factors given in Eq. (53). Right panel: comparison of the form-factor $F^{+}\left(x_{\gamma}\right)$ extracted by the KLOE collaboration in Ref. [9] and the theoretical prediction from Eqs. (13)-(17). The shaded areas represent uncertainties at the level of 1 standard deviation.

B meson real photon emissions
Factorization at leading power in an expansion of the decay amplitude in $\Lambda_{\mathrm{QCD}} / \mathrm{E}_{\gamma}$ and $\Lambda_{\mathrm{QCD}} / \mathrm{mb}$ has been established to all orders in the strong coupling α_{s}. In this approximation, the branching fraction depends only on the leading-twist B-meson light-cone distribution amplitude (LCDA)

$$
\phi_{+}(\omega, \mu)
$$

More precisely, it is proportional to $1 / \lambda_{\mathrm{B}}$, the most important LCDA parameter in exclusive decays, is uncertain by a large factor ranging from 200 MeV favoured by non-leptonic decays to 460 MeV from QCD sum rules.

The radiative leptonic decay has therefore been suggested
as a measurement of λ_{B}

Figure 1. Leading contribution to $B \rightarrow \gamma \ell \nu_{\ell}$.

For large photon energies the form factors can be written as [9]

$$
\begin{align*}
& F_{V}\left(E_{\gamma}\right)=\frac{e_{u} f_{B} m_{B}}{2 E_{\gamma} \lambda_{B}(\mu)} R\left(E_{\gamma}, \mu\right)+\xi\left(E_{\gamma}\right)+\Delta \xi\left(E_{\gamma}\right), \\
& F_{A}\left(E_{\gamma}\right)=\frac{e_{u} f_{B} m_{B}}{2 E_{\gamma} \lambda_{B}(\mu)} R\left(E_{\gamma}, \mu\right)+\xi\left(E_{\gamma}\right)-\Delta \xi\left(E_{\gamma}\right) . \tag{2.7}
\end{align*}
$$

The first term is equal in both expressions and represents the leading-power contribution in the heavy-quark expansion (HQE). It originates only from photon emission from the light spectator quark in B meson (Fig. 1). In the above, f_{B} is the decay constant of B meson, and the quantity λ_{B} is the first inverse moment of the B-meson LCDA,

$$
\begin{equation*}
\frac{1}{\lambda_{B}(\mu)}=\int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{+}(\omega, \mu) \tag{2.8}
\end{equation*}
$$

Further applications in decays of heavy neutral B mesons: Virtual corrections (some questions still open)

Enhanced electromagnetic correction to the rare \boldsymbol{B}-meson decay $\boldsymbol{B}_{s, d} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$
Martin Beneke, ${ }^{1}$ Christoph Bobeth,,${ }^{1,2}$ and Robert Szafron ${ }^{1}$

Further applications in decays of heavy neutral B mesons: real corrections (some questions still open)

see the talk by L. Vittorio

$$
B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma \text { from } B_{s}^{0} \rightarrow \mu^{+} \mu^{-}
$$

Francesco Dettori ${ }^{a}$, Diego Guadagnoli ${ }^{b}$ and Méril Reboud ${ }^{b, c}$

Figure 3: Dimuon invariant mass distribution from LHCb's measurement of $\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$[52] overlayed with the contribution expected from $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ decays (ISR only). Assumes flat efficiency versus $m_{\mu^{+} \mu^{-}}$. The line denoted as ' $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ NP' refers to the $V-A$ case with $\delta C_{9}=-12 \% C_{9}^{\mathrm{SM}}$ (see also Fig. 2). The two filled curves are not stacked onto each other.

Particle(s) from weak vertex with momenta q

- $F C N C Q b=Q q$ (need long distance in addition) :
$\boldsymbol{F}\left(\boldsymbol{q}^{2}, \boldsymbol{k}^{2}\right)$

$$
\mathrm{H}^{\text {weak }} \sim \mathrm{O}_{9,10}: B_{d, s} \rightarrow \ell^{+} \ell^{-} \gamma
$$

$$
F\left(q^{2}\right)=F\left(q^{2}, 0\right)
$$

Bobeth's talk

$$
\mathrm{H}_{\text {weak }} \sim \mathrm{O}_{7}: B_{d, s} \rightarrow \ell^{+} \ell^{-} \gamma
$$

$$
F^{*}\left(k^{2}\right)=F\left(0, k^{2}\right)
$$

flavoured

$$
\mathrm{H}_{\text {weak }}^{\sim} \bar{q} \gamma_{\mu} b_{L} \partial^{\mu} a: B_{d, s} \rightarrow \ell^{+} \ell^{-} a
$$

$$
F\left(m_{a}^{2}, k^{2}\right) \rightarrow F^{*}\left(k^{2}\right)
$$ axion

Ziegler's talk
or dark photon, scalar DM, ...
Xin-Yu Tuo et al. arXiv:2103.11331

- FCCC $\mathrm{Qb} \neq \mathrm{Qq}$:
G. Gagliardi et al. arXiv:2202.03833 [hep-lat]

$$
\mathrm{H}^{\text {weak }} \sim V_{u b} \bar{u} \gamma_{\mu} b_{L} \ell \gamma^{\mu} \nu_{L}: B_{u} \rightarrow \ell^{+} \nu \gamma
$$

- Physics: helicity suppression of $B \rightarrow f_{i} \bar{f}_{j}$ relieved in radiative decavl

Radiative leptonic decay rates of pseudoscalar mesons

RMI23 Collaboration

- Diagrammatically

Antonio Desidero, Giulia de Divitiis, Marco Garofalo, Martin Hansen, Roberto Frezzotti, Nazario Tantalo, Massimo di Carlo, Davide Giusti, Vittorio Lubicz, Guido Martinelli, Chris Sachrajda, Francesco Sanfilippo, Silvano Simula, Cecilia Tarantino

$H_{W}^{r \nu}(k, \boldsymbol{p})=\epsilon_{\mu}^{r}(k) H_{W}^{\mu \nu}(k, \boldsymbol{p})=\epsilon_{\mu}^{r}(k) \int d^{4} y e^{i k \cdot y}\langle 0| \mathrm{T}\left[j_{W}^{\nu}(0) j_{\mathrm{em}}^{\mu}(y)\right]\left|D_{s}^{+}(\boldsymbol{p})\right\rangle$

Why QED Corrections?

1) Pushing precision under percent level
real photon emission has always to be included when considering $\mathrm{O}\left(\alpha_{e m}\right)$ corrections [Block\&Nordsiek mechanism]

CKM matrix element extraction from leptonic decays
[Di Carlo et arXiv:1904.08731 (2019)] and [Boyle et Al arXiv:2211.12865 (2022)] for K and π
2) Removal of helicity suppression through photon emission
3) Indirect search of New Physics

Operators that parametrize new physics are involved in processes where also QED has to be included.

despite $\alpha_{e m}$ there is an enhancement of $\left(m_{P} / m_{l}\right)^{2}$
(b)

NP is more likely to be detected
$\propto \alpha_{e m}^{2}$

Courtesy of F. Mazzetti

$\mathrm{O}\left(\alpha_{e m}\right)$ corrections

NP constraints

- Virtual photon emission (c)
 $\propto \alpha_{e m}^{2}$

(a)

(b)

$P^{+} \rightarrow \ell^{+} \nu_{\ell} \gamma^{(*)}$ decays

- Can be computed in perturbation theory, by simply knowing f_{P}

- (Virtual) photon interacts with the internal hadronic structure of P
- Non perturbative strong dynamics encoded in the hadronic tensor

Hadronic Tensor and Form Factors

$$
\begin{aligned}
& H^{\mu \nu}(k, p)=\int d^{4} x e^{i k \cdot x}\langle 0| T\left[J_{e m}^{\mu}(x) J_{W}^{\nu}(0)\right]|P(p)\rangle \\
& H^{\mu \nu}=H_{p t}^{\mu \nu}+H_{S D}^{\mu \nu}, \text { Point-like, IR contribution } \\
& H_{p t}^{\mu \nu}\left.=f_{P} g^{\mu \nu}-\frac{(2 p-k)^{\mu}(p-k)^{\nu}}{(p-k)^{2}-m_{P}^{2}}\right], \quad \mathrm{SD} \text { form factors } \\
& H_{S D}^{\mu \nu}=\frac{H_{1}}{m_{p}}\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right)+\frac{H_{2}}{m_{P}}\left[\left(k \cdot p-k^{2}\right) k^{\mu}-k^{2}(p-k)^{\mu}\right] \\
&+\frac{F_{A}}{m_{P}}\left[(k-k)^{2}-k^{2}-m_{P}^{2}\right. \\
&\left.\left(k-k^{2}\right) g^{\mu \nu}-(p-k)^{\mu} k^{\nu}\right]-i \underbrace{\epsilon^{\mu \nu \alpha \beta} k_{\alpha} p_{\beta} .}_{m_{P}} \begin{array}{l}
\text { Non perturbative functions } \\
\text { of } k^{2} \text { and }(p-k)^{2}
\end{array}
\end{aligned}
$$

For real photon only F_{A} and F_{V} contribute!

1 pointlike $f_{P}+2$ Real Photon Form Factors + 2 Virtual Photon Form Factors

A look at the past:

$K^{+} \rightarrow \ell^{+} \nu_{\ell} \ell^{\prime+} \ell^{\prime-}$

Channels	our Lattice	Tuo et al.*	ChPT**	experiments
$\operatorname{Br}\left[K \rightarrow \mu \nu_{\mu} e^{+} e^{-}\right]$	$8.26(13) \times 10^{-8}$	$10.59(33) \times 10^{-8}$	$9.8-8.2 \times 10^{-8}$	$7.93(33) \times 10^{-8 * * *}$
$\operatorname{Br}\left[K \rightarrow e \nu_{e} \mu^{+} \mu^{-}\right]$	$0.762(49) \times 10^{-8}$	$0.72(5) \times 10^{-8}$	$1.1-0.6 \times 10^{-8}$	$1.72(45) \times 10^{-8 * * * *}$
$\operatorname{Br}\left[K \rightarrow e \nu_{e} e^{+} e^{-}\right]$	$1.95(11) \times 10^{-8}$	$1.77(16) \times 10^{-8}$	$3.4-1.7 \times 10^{-8}$	$2.91(23) \times 10^{-8 * * *}$
$\operatorname{Br}\left[K \rightarrow \mu \nu_{\mu} \mu^{+} \mu^{-}\right]$	$1.178(35) \times 10^{-8}$	$1.45(6) \times 10^{-8}$	$1.5-1.1 \times 10^{-8}$	-

 *X.Y. Tuo et Al arXiv:2103.11331 (2022).
**J. Bijnens et Al arXiv:9411311 (1993)
*** A. A. Poblaguev et Al arXiv: 0204006 (2002) (based on one gauge **** H. Ma et Al arXiv:0505011(2006) ensemble only) [G.Gagliardi et Al arXiv:2202.03833 (2022)]

Reasonable agreement with other theoretical calculations
 Less with experimental measurements

$D_{s}^{+} \rightarrow e^{+} \nu_{e} \gamma$ branching fraction as a function of the cutoff on the photon

$$
\operatorname{Br}\left(\Delta E_{\gamma}=10 \mathrm{MeV}\right)=4.4(3) \times 10^{-6} \ll 1.3 \times 10^{-4} \underset{\text { BESIII Exp upper bound }}{\text { energy }}
$$

Quark Model Predictions $10^{-5}-10^{-4}$ *
pQCD+HQEFT predictions $10^{-3 * *}$

Test of
QCD and of BSM
contributions

Relating $F_{V} \rightarrow g_{D_{s} D_{s}^{*} \gamma}=-\frac{M_{D_{s}^{s} f_{D_{s}} g_{s} D_{D}^{*} D_{,}}}{2 M_{D_{s}}}$

$$
F_{V}\left(x_{\gamma}\right)=\frac{C_{V}}{\sqrt{x_{\alpha}^{2}}\left(x_{\alpha}^{2}\right.} x_{\sim}
$$

- disagreement with LCSR

Properly reproduced by lattice data $\frac{R_{V}-R_{D_{s}^{*}}}{R_{D_{s}^{*}}}<3 \% 1.5 \sigma$ compatibility
*[B. Pullin et AI ArXiv:2106.13617 (2021)]
**[G. C. Donald ArXiv:1312.5264 (2014)]

	LCSR *	HPQCD **	This work
$g_{D_{s}^{*} D_{s} \gamma}\left[\mathrm{GeV}^{-1}\right]$	$0.60(19)$	$0.10(2)$	$0.118(13)$
$g_{D_{s}^{*} D_{s} \gamma}^{(s)}\left[\mathrm{GeV}^{-1}\right]$	1.0	$0.50(3)$	$0.532(15)$
$g_{D_{s}^{*} D_{s} \gamma}^{(c)}\left[\mathrm{GeV}^{-1}\right]$	-0.4	$-0.40(2)$	$-0.415(16)$
$\frac{g^{(s)}}{g^{(c)}}$	-2.5	$-1.25(10)$	$-1.282(61)$

Status of Lattice Calculations of g_{A}

-

Neutron lifetime and the axial coupling

$$
\frac{1}{\tau_{n}}=\frac{G_{\mu}^{2}\left|V_{u d}\right|^{2}}{2 \pi^{3}} m_{e}^{5}\left(1+3 g_{A}^{2}\right)(1+R C) f_{V, A}
$$

Radiative corrections are the Holy Grail

- The neutron lifetime and g_{A} (neutron decay) are used to probe the limits of the Standard Model
- We should have a (meaningful) Standard Model prediction for g_{A} - LQCD (lattice QCD)
- To gain confidence in the application of LQCD to nuclear physics, we must benchmark (calibrate) our calculations against well known quantities of interest, such as g_{A}
- In order for the theoretical uncertainty on g_{A} to match the larger uncertainty in the neutron lifetime measurements, we must determine g_{A} with $<0.2 \%$ uncertainty - is this crazy?

$$
\begin{aligned}
& \tau_{n}^{\text {beam }}=888.0(2.0) \mathrm{s} \\
& \tau_{n}^{\text {bottle }}=879.4(0.6) \mathrm{s}
\end{aligned}
$$

nucleon axial coupling from LQCD

- To gain confidence in the application of Lattice QCD to nuclear physics, we must benchmark (calibrate) our calculations against well known quantities of interest
$\square g_{\mathrm{A}}$ was supposed to be a good benchmark calculation for single nucleon structure - but it proved to have significant systematic challenges, preventing results with the precision anticipated
- FLAG 2019 has included single nucleon quantities in their averaging for the first time
\square Notice one result is significantly more precise than the others

[arXiv:1805.12130]

Final result

statistical	0.81%
chiral extrapolation	0.31%
$a \rightarrow 0$	0.12%
$L \rightarrow \infty$	0.15%
isospin	0.03%
model selection	0.43%
total	0.99%

$$
g_{A}^{\mathrm{QCD}}=1.2711(103)^{s}(39)^{\chi}(15)^{a}(19)^{V}(04)^{I}(55)^{M}
$$

\square More precise results at the physical pion mass will improve the three largest uncertainties:
\square statistical (s), extrapolation (χ) and model selection (M) NOTE, a12m130 has 2.3% uncertainty
\square Following our existing strategy, we anticipate getting to 0.5% by the end of this year
\square Getting below (or maybe to 0.5%) will require a 4th lattice spacing as well ($\sim 0.06 \mathrm{fm}$)

- Adding a FV study on additional pion mass points will improve the FV uncertainty
-The isospin uncertainty seems unnecessary...
$\left|\mathrm{V}_{\mathrm{ud}}\right|$ is extracted from neutron and superallowed Beta decays
The precision of the experiments is such that isospin breaking effects and radiative corrections are very important
Recent efforts to reduce systematic uncertainties in the calculation of radiative corrections and in particular the contribution of the box diagrams

Peng-Xiang Ma et al. arXiv:2308.16755v

$$
\begin{equation*}
\Delta_{R}^{V}=\frac{\alpha}{2 \pi}\left[3 \ln \frac{M_{Z}}{m_{p}}+\ln \frac{M_{Z}}{M_{W}}+\tilde{a}_{g}\right]+\delta_{\mathrm{HO}}^{\mathrm{QED}}+2 \square_{\gamma W}^{V A} \tag{20}
\end{equation*}
$$

(

$$
\left(\square_{\gamma W}^{V A}\right)^{M S}=2.81(16) \frac{\alpha}{2 \pi}=3.26(19) \times 10^{-3}
$$

ure 1. The γW-box diagrams for the ereqhileptonic , cess $H_{i} \rightarrow H_{f} e \bar{\nu}_{o}$.

$$
\begin{aligned}
& \left|H_{u d}\right|^{2}=\frac{0.97154(22)_{\exp }(54)_{\mathrm{NS}}}{\left(1+\Delta_{R}^{V}\right)}, \quad \text { superallowe } \\
& \left|V_{u d}\right|^{2}=\frac{0.9728(6)_{\tau_{n}}(16)_{g_{A}}}{\left(1+\Delta_{R}^{V}\right)}, \quad \text { free neutron. }
\end{aligned}
$$

$$
\left(\square_{\gamma W}^{V A}\right)^{\text {new }}=3.26(9) \frac{\alpha}{2 \pi}=3.79(10) \times 10^{-3}
$$

$$
\Delta_{R}^{V, \text { old }}=0.02361(38) \rightarrow \Delta_{R}^{V, \text { new }}=0.02467(22)
$$

$$
\Delta_{R}^{V}=0.02439(19)
$$

$$
\left|V_{u d}\right|=0.97386(11)_{\exp .}(9)_{\mathrm{RC}}(27)_{\mathrm{NS}}
$$

The Effective Hamiltonian

$$
\begin{aligned}
& q \sim m_{K} \ll M_{W} \\
& \mathcal{H}_{e f f}=-\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left(\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) u\right)\left(\bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d\right)
\end{aligned}
$$

Non-leptonic Decays

- Δm_{K} is given by

$$
\Delta m_{K} \equiv m_{K_{L}}-m_{K_{S}}=2 \mathscr{P} \sum_{\alpha} \frac{\left\langle\bar{K}^{0}\right| \mathscr{H}_{W}|\alpha\rangle\langle\alpha| \mathscr{H}_{W}\left|K^{0}\right\rangle}{m_{K}-E_{\alpha}}=3.483(6) \times 10^{-12} \mathrm{MeV} .
$$

- The above correlation function gives $\left(T=t_{B}-t_{A}+1\right)$

$$
\left.\begin{array}{c}
C_{4}\left(t_{A}, t_{B} ; t_{i}, t_{f}\right)=\left|Z_{K}\right|^{2} e^{-m_{K}\left(t_{f}-t_{i}\right)} \sum_{n} \frac{\left\langle\bar{K}^{0}\right| \mathscr{H}_{W}|n\rangle\langle n| \mathscr{H}_{W}\left|K^{0}\right\rangle}{\left(m_{K}-E_{n}\right)^{2}} \times \\
\text { dangerous terms }
\end{array} \int^{\left(M_{K}-E_{n}\right) T}-\left(m_{K}-E_{n}\right) T-1\right\} .
$$

- From the coefficient of T we can therefore obtain

$$
\Delta m_{K}^{\mathrm{FV}} \equiv 2 \sum_{n} \frac{\left\langle\bar{K}^{0}\right| \mathscr{H}_{W}|n\rangle\langle n| \mathscr{H}_{W}\left|K^{0}\right\rangle}{\left(m_{K}-E_{n}\right)} .
$$

RBC-UK OCD

$$
\varepsilon^{\prime} / \varepsilon=(1.4 \pm 7.0) \cdot 10^{-4} \quad\left(\frac{\operatorname{Re} A_{0}}{\operatorname{Re~} A_{2}}\right)=31.0 \pm 6.6
$$

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\exp }=(16.6 \pm 2.3) \cdot 10^{-4}
$$

$$
\left(\frac{\operatorname{Re~} \mathrm{A}_{0}}{\operatorname{Re} \mathrm{~A}_{2}}\right)_{\mathrm{exp}}=22.4
$$

Courtesy by A. Buras 2015

Results for $\operatorname{Re}\left[A_{0}\right], \operatorname{Im}\left[A_{0}\right]$ and $\operatorname{Re}\left[\epsilon^{\prime} / \epsilon\right]$

Xu Feng Lattice 2017

- Determine the $K \rightarrow \pi \pi(I=0)$ amplitude A_{0}
- Lattice results

$$
\begin{aligned}
& \operatorname{Re}\left[A_{0}\right]=4.66(1.00)_{\text {stat }}(1.26)_{\text {syst }} \times 10^{-7} \mathrm{GeV} \\
& \operatorname{Im}\left[A_{0}\right]=-1.90(1.23)_{\text {stat }}(1.08)_{\text {syst }} \times 10^{-11} \mathrm{GeV}
\end{aligned}
$$

- Experimental measurement

$$
\begin{aligned}
& \operatorname{Re}\left[A_{0}\right]=3.3201(18) \times 10^{-7} \mathrm{GeV} \\
& \operatorname{Im}\left[A_{0}\right] \text { is unknown }
\end{aligned}
$$

- Determine the direct $C P$ violation $\operatorname{Re}\left[\epsilon^{\prime} / \epsilon\right]$

$$
\begin{array}{ll}
\operatorname{Re}\left[\epsilon^{\prime} / \epsilon\right]=0.14(52)_{\text {stat }}(46)_{\text {syst }} \times 10^{-3} & \text { Lattice } \\
\operatorname{Re}\left[\epsilon^{\prime} / \epsilon\right]=1.66(23) \times 10^{-3} & \text { Experiment }
\end{array}
$$

Phase of final state interaction smaller than the experimental value
2.1σ deviation $\quad \Rightarrow \quad$ require more accurate lattice results

Four dominant contributions to $\varepsilon^{\prime} / \varepsilon$ in the SM

AJB, Jamin, Lautenbacher (1993); AJB, Gorbahn, Jäger, Jamin (2015)

Assumes that ReA ${ }_{0}$ and ReA_{2} ($\Delta I=1 / 2$ Rule) fully described by SM (includes isospin breaking corrections)
$\varepsilon^{\prime} / \varepsilon$ from RBC-UKQCD

Calculate all contributions directly (no isospin breaking corrections)

$$
\left[-(6.5 \pm 3.2)+25.3 \cdot B_{6}^{(1 / 2)}+(1.2 \pm 0.8)-10.2 \cdot B_{8}^{(3 / 2)}\right]
$$

$\Delta I=\mathbf{1} / \mathbf{2} K \rightarrow \pi \pi$ (Qi Liu)

- Code 50 different contractions
- For each of 400 configurations invert with source at each of 32 times.
- Use Ran Zhou's deflation code

Anatomy of $\varepsilon^{\prime} / \varepsilon-A$ new flavour anomaly?
AJB, Gorbahn, Jäger, Jamin,, 1507.xxxx

RBC-UKQCD

$$
\varepsilon^{\prime} / \varepsilon=(1.4 \pm 7.0) \cdot 10^{-4}
$$

$(3.2 \sigma) \quad \varepsilon^{\prime} / \varepsilon=(2.2 \pm 3.8) \cdot 10^{-4}$

$$
\varepsilon^{\prime} / \varepsilon=(6.3 \pm 2.5) \cdot 10^{-4}
$$

RBC-QCD values

$$
\begin{aligned}
& B_{6}^{(1 / 2)}=0.57 \pm 0.15 \\
& B_{8}^{(3 / 2)}=0.76 \pm 0.05
\end{aligned}
$$

large N bounds (AJB, Gérard) $B_{6}^{(1 / 2)}=B_{8}^{(3 / 2)}=0.76$

$$
\varepsilon^{\prime} / \varepsilon=(9.1 \pm 3.3) \cdot 10^{-4}
$$

large N bounds (AJB, Gérard) $B_{6}^{(1 / 2)}=B_{8}^{(3 / 2)}=1.0$
exp: $\quad \varepsilon^{\prime} / \varepsilon=(16.6 \pm 3.3) \cdot 10^{-4}$

Systematic error budget

Christopher Kelly

 (RBC \& UKQCD collaborations)- Primary systematic errors of 2015 work:

Lattice2021, MIT, USA

- Finite lattice spacing: 12\%
- Wilson coefficients: 12%
- Renormalization (mostly PT matching): 15\%
- Excited-state: $\leq 5 \%$ but now known to be significantly underestimated
- Lellouch-Luscher factor (derivative of $\pi \pi$ phase shift wrt. energy): 11%
- In our new work we have used step-scaling to raise the renormalization scale from $1.53 \rightarrow 4.00 \mathrm{GeV}: 15 \% \rightarrow 5 \%$
- 3 operators have dramatically improved understanding of $\pi \pi$ system: Lellouch-Luscher factor $11 \% \rightarrow 1.5 \%$
- Detailed analysis shows no evidence of remaining excited-state contamination: Excited state error now negligible!
- Still single lattice spacing: Discretization error unchanged.
- Evidence that Wilson coefficient systematics are driven by using PT for 3-4f matching, not improved by higher μ : Wilson coeff error unchanged.

Final result for ε^{\prime}

- Combining our new result for $\operatorname{Im}\left(\mathrm{A}_{0}\right)$ and our 2015 result for $\operatorname{Im}\left(A_{2}\right)$, and again using expt. for the real parts, we find

$$
\begin{array}{r}
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=\operatorname{Re}\left\{\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{ReA}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\} \\
=0.00217(26)(62)(50)<\mathrm{IB}+\mathrm{EM}
\end{array}
$$

Consistent with experimental result:

$$
\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)_{\operatorname{expt}}=0.00166(23)
$$

$$
\text { RBC/UKQCD: } e^{\prime} / e=16.7 \times 10^{-4} \quad \text { Utfit: } \quad e^{\prime} / e=15.2(4.7) \times 10^{-4}
$$

A second group should do this calculation!!

$$
Q^{E X P}=\sum_{i} C_{S M}^{i}\left(M_{W}, m_{t}, \alpha_{s}\right)\langle F| \hat{O}_{i}|I\rangle+\sum_{i^{\prime}} C_{\text {Beyond }}^{i^{\prime}}\left(\tilde{m}_{\beta}, \alpha_{s}\right)\langle F| \hat{O}_{i^{\prime} \mid}|I\rangle
$$

UT generalization Beyond the Standard Model

- fit simultaneously for the CKM and the NP parameters (generalized UT analysis)
o parameterize BSM effects in $\Delta \mathrm{F}=2$ Hamiltonian in modelindependent
© use all available experimental information
© find out NP contributions to $\Delta \mathrm{F}=2$ transitions

$$
\begin{aligned}
& \Delta m_{q / K}=C_{B_{q} / \Delta m_{k}}\left(\Delta m_{q / K}\right)^{S M} \\
& A_{C P}^{B_{s} \rightarrow / / \psi K_{s}}=\sin 2\left(\beta+\phi_{B_{d}}\right) \\
& A_{S L}^{q}=\operatorname{Im}\left(\Gamma_{12}^{q} / A_{q}\right) \\
& \varepsilon_{K}=C_{\varepsilon} \varepsilon_{K}^{S M} \\
& A_{C P}^{B_{B}-J / \psi \phi} \sim \sin 2\left(-\beta_{s}+\phi_{B_{s}}\right) \\
& \Delta \Gamma^{q} / \Delta m_{q}=\operatorname{Re}\left(\Gamma_{12}^{q} / A_{q}\right)
\end{aligned}
$$

beyond the SM (Supersymmetry)

	Spin 0 SQuarks Q_{L}, U_{R}, D_{R} SLeptons L_{L}, E_{R}
Spin 1 Gauge bosons W, Z, γ, g	$\longmapsto \begin{array}{ll} \operatorname{Spin} 1 / 2 & \begin{array}{l} \text { Gauginos } \\ w, z, \gamma, \mathcal{N}^{\sim} \sim \end{array} \end{array}$
Spin 0 Higgs bosons H_{1}, H_{2}	$\begin{array}{lr} \text { Spin } 1 / 2 & \text { Higgsinos } \\ & H_{1}^{\sim}, H_{2}^{\sim} \end{array}$

In general the mixing mass matrix of the SQuarks (SMM) is not diagonal in flavour space analogously to the quark case
We may either

Diagonalize the SMM

or Rotate by the same matrices the SUSY partners of the u - and d-like quarks

$$
\left(Q_{L}^{j}\right)^{\prime}=U^{i j} Q_{L} Q_{L}^{j}
$$

New local four-fermion operators are generated

$$
\begin{aligned}
& \mathrm{Q}_{1}=\left(\bar{b}_{\mathrm{L}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\left(\bar{b}_{\mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{B}}\right) \quad \mathrm{SM} \\
& \mathrm{Q}_{2}=\left(\overline{5}_{\mathrm{R}}{ }^{\mathrm{A}} \mathrm{~d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\left({\overline{b_{R}}}^{\mathrm{B}} \mathrm{~d}_{\mathrm{L}}{ }^{\mathrm{B}}\right)
\end{aligned}
$$

$\mathrm{Q}_{3}=\left(\mathrm{b}_{\mathrm{R}}{ }^{\mathrm{A}} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{B}}\right)\left(\mathrm{b}_{\mathrm{R}}{ }^{\mathrm{B}} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)$
$\mathrm{Q}_{4}=\left(\bar{b}_{R}{ }^{\mathrm{A}} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\left(\overline{5}_{\mathrm{L}}{ }^{\mathrm{B}} \mathrm{d}_{\mathrm{R}}{ }^{\mathrm{B}}\right)$
$Q_{5}=\left(5_{R}{ }^{A} d_{L}{ }^{B}\right)\left(b_{L}{ }^{B} d_{R}{ }^{A}\right)$
Similarly for the s quark e.g.
$\left(\bar{s}_{R}{ }^{A} d_{L}{ }^{A}\right)\left(s_{R}{ }^{B} d_{L}{ }^{B}\right)$

+ those obtained by $L \leftrightarrow R$

$$
\begin{aligned}
\left\langle\bar{K}^{0}\right| O_{1}(\mu)\left|K^{0}\right\rangle & =\frac{8}{3} M_{K}^{2} f_{K}^{2} B_{1}(\mu) \\
\left\langle\bar{K}^{0}\right| O_{2}(\mu)\left|K^{0}\right\rangle & =-\frac{5}{3}\left(\frac{M_{K}}{m_{s}(\mu)+m_{d}(\mu)}\right)^{2} M_{K}^{2} f_{K}^{2} B_{2}(\mu), \\
\left\langle\bar{K}^{0}\right| O_{3}(\mu)\left|K^{0}\right\rangle & =\frac{1}{3}\left(\frac{M_{K}}{m_{s}(\mu)+m_{d}(\mu)}\right)^{2} M_{K}^{2} f_{K}^{2} B_{3}(\mu), \\
\left\langle\bar{K}^{0}\right| O_{4}(\mu)\left|K^{0}\right\rangle & =2\left(\frac{M_{K}}{m_{s}(\mu)+m_{d}(\mu)}\right)^{2} M_{K}^{2} f_{K}^{2} B_{4}(\mu) \\
\left\langle\bar{K}^{0}\right| O_{5}(\mu)\left|K^{0}\right\rangle & =\frac{2}{3}\left(\frac{M_{K}}{m_{s}(\mu)+m_{d}(\mu)}\right)^{2} M_{K}^{2} f_{K}^{2} B_{5}(\mu)
\end{aligned}
$$

Results of BSM analysis: CKM parameters

Results of BSM analysis: New Physics parameters

Results of BSM analysis: New Physics parameters

The ratio of NP/SM amplitudes is:
$<25 \%$ @68\% prob. (35\% @95\%) in B_{d} mixing
$<25 \%$ @68\% prob. (30\% @95\%) in B_{s} mixing
dark: 68\%
light: 95\%
SM: red cross

UT $_{\text {fit }}$

Beyond the SM

Wilson Coefficients results

*for lower bound for loop-mediated contributions, simply multiply by $\alpha_{\mathrm{s}}(\sim 0.1)$ or by $\alpha_{w}(\sim 0.03)$.

Generic: $C(\Lambda)=\alpha / \Lambda^{2}$, $\mathrm{Fi}_{\mathrm{i}} \sim 1$, arbitrary phase, $\alpha \sim 1$ for strongly coupled NP

- $\alpha \sim \alpha_{w}$ in case of loop coupling -through weak interactions*

$$
\Lambda>1.310^{4} \mathrm{TeV}
$$

NMFV: $\mathrm{C}(\Lambda)=\alpha \times\left|\mathrm{F}_{\text {sM }}\right| / \Lambda^{2}, \mathrm{Fi}_{\sim}^{\sim}\left|\mathrm{F}_{\text {sM }}\right|$, arbitrary phase

- $\alpha \sim \alpha_{w}$ in case of loop coupling -through weak interactions*

$$
\Lambda>2.7 \mathrm{TeV}
$$

2022

Reminder:
 $\mathrm{R}_{\mathrm{K}}=\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}\right) / \mathrm{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}\right)$

- Test of lepton universality : $\mathrm{R}_{\mathrm{K}} \sim 1$ in SM , with negligible theoretical uncertainties

- Experimentally challenging
- lower trigger efficiency for electrons, resolution deteriorated by bremsstrahlung
- Other modes suitable for same test: $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} l^{+} l^{-}, \mathrm{B}_{\mathrm{s}} \rightarrow \phi l^{+} l^{-}, \Lambda_{\mathrm{B}} \rightarrow \Lambda l^{+} l^{-}$

Excitement

Lepton Flavour Universality (LFU) tests in $b \rightarrow s \ell^{+} \ell^{-}$

- Coherent pattern of tension to SM in LFU test with $b \rightarrow s \ell^{+} \ell^{-}$transition:
$\uparrow R_{X}$ ratio extremely well predicted in SM
- Cancellation of hadronic uncertainties at 10^{-4}
- $\mathcal{O}(1 \%)$ QED correction [anu.ppys.J.c. 76 (2016) 8]
- Statistically limited
- Any departure from unity is a clear sign of New Physics

(*) Measurements from Belle not shown (larger statistical uncertainties)

Harakiri!

Results

\star Most precise and accurate LFU
test in $b \rightarrow s \ell \ell$ transition

- Compatible with SM with a simple χ^{2} test on 4 measurement at 0.2σ

Tension in the angular observables

$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$angular observables, in particular P_{5}^{\prime} / S_{5}

- $2013\left(1 \mathrm{fb}^{-1}\right)$: disagreement with the SM for P_{2} and P_{5}^{\prime} (PRL 111, 191801 (2013))
- March 2015 ($3 \mathrm{fb}^{-1}$): confirmation of the deviations (LHCb-conf-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

3.7σ deviation in the $3 r d$ bin

Belle supports LHCb (arXiv:1604.04042)
tension at 2.1σ

2.9σ in the 4th and 5th bins (3.7 σ combined)

3.4 σ combined fit (likelihood)

Tension in the angular observables - 2020 updates
$P_{5}^{\prime}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right): 2020$ LHCb update with $4.7 \mathrm{fb}^{-1}: \sim 2.9 \sigma$ local tension

Phys. Rev. Lett. 125, 011802 (2020)

ATLAS-CONF-2017-023; CMS-PAS-BPH-15-008

First measurement of $B^{+} \rightarrow K^{*+} \mu^{+} \mu^{-}$angular observables using the full Run 1 and Run 2 dataset ($9 \mathrm{fb}^{-1}$):

The results confirm the global tension with respect to the SM!

Nazila Mahmoudi

Corfu - 31 Aug. 2023

with respect to the, model dependent, SM inspired theoretical calculations

Theoretical framework

Effective field theory

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left(\sum_{i=1 \cdots 10, S, P}\left(C_{i}(\mu) \mathcal{O}_{i}(\mu)+C_{i}^{\prime}(\mu) \mathcal{O}_{i}^{\prime}(\mu)\right)\right)
$$

Operator set for $b \rightarrow s$ transitions:

Wilson coefficients:
The Wilson coefficients are calculated perturbatively and are process independ SM contributions known to NNLL (Bobeth, Misiak, Urban '99; Misiak, Steinhauser 'o4, Gorl Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06,...)

$$
C_{7} \sim-0.3 \quad C_{9} \sim 4.2 \quad C_{10} \sim-4.2
$$

Nazila Mahmoudi

Penguin Non-local Contributions

Global fits

Global fits of the observables obtained by minimisation of

$$
\begin{aligned}
& \chi^{2}=\left(\vec{O}^{\text {th }}-\vec{O}^{\text {exp }}\right) \cdot\left(\Sigma_{\text {th }}+\Sigma_{\exp }\right)^{-1} \cdot\left(\vec{O}^{\text {th }}-\vec{O}^{\exp }\right) \\
& \left(\Sigma_{\text {th }}+\Sigma_{\text {exp }}\right)^{-1} \text { is the inverse covariance matrix. }
\end{aligned}
$$

198 observables relevant for leptonic and semileptonic decays:

- $\operatorname{BR}\left(B \rightarrow X_{s} \gamma\right)$
- $\operatorname{BR}\left(B \rightarrow X_{d} \gamma\right)$
- $\operatorname{BR}\left(B \rightarrow K^{*} \gamma\right)$
- $\Delta_{0}\left(B \rightarrow K^{*} \gamma\right)$
- $\mathrm{BR}^{\text {low }}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$
- $\mathrm{BR}^{\text {high }}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$
- $\mathrm{BR}^{\text {low }}\left(B \rightarrow X_{s} e^{+} e^{-}\right)$
- $\mathrm{BR}^{\text {high }}\left(B \rightarrow X_{s} e^{+} e^{-}\right)$
- $\mathrm{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$
- $\operatorname{BR}\left(B_{s} \rightarrow e^{+} e^{-}\right)$
- $\mathrm{BR}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)$
- R_{K} in the low q^{2} bin
- $R_{K^{*}}$ in 2 low q^{2} bins
- $\operatorname{BR}\left(B \rightarrow K^{0} \mu^{+} \mu^{-}\right)$
- $B \rightarrow K^{+} \mu^{+} \mu^{-}: B R, F_{H}$
- $B \rightarrow K^{*} e^{+} e^{-}: B R, F_{L}, A_{T}^{2}, A_{T}^{R e}$
- $B \rightarrow K^{* 0} \mu^{+} \mu^{-}: B R, F_{L}, A_{F B}, S_{3}, S_{4}$, $S_{5}, S_{7}, S_{8}, S_{9}$
in 8 low q^{2} and 4 high q^{2} bins
- $B^{+} \rightarrow K^{*+} \mu^{+} \mu^{-}: B R, F_{L}, A_{F B}, S_{3}$, $S_{4}, S_{5}, S_{7}, S_{8}, S_{9}$
in 5 low q^{2} and 2 high q^{2} bins
- $B_{s} \rightarrow \phi \mu^{+} \mu^{-}: \mathrm{BR}, F_{L}, S_{3}, S_{4}, S_{7}$ in 3 low q^{2} and 2 high q^{2} bins
- $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}: \mathrm{BR}, A_{F B}^{\ell}, A_{F B}^{h}, A_{F B}^{\ell h}$, F_{L} in the high q^{2} bin

Computations performed using Superlso public program

Single operator fits

Comparison of one-operator NP fits:

All observables 2022 $\left(\chi_{\mathrm{SM}}^{2}=253.3\right)$			
	b.f. value	$\chi_{\text {min }}^{2}$	Pull ${ }_{\mathrm{SM}}$
δC_{9}	-0.95 ± 0.13	215.8	6.1σ
δC_{9}^{e}	0.82 ± 0.19	232.4	4.6σ
δC_{9}^{μ}	-0.92 ± 0.11	195.2	7.6σ
δC_{10}	0.08 ± 0.16	253.2	0.5σ
δC_{10}^{e}	-0.77 ± 0.18	230.6	4.8σ
δC_{10}^{μ}	0.43 ± 0.12	238.9	3.8σ
$\delta C_{\mathrm{LL}}^{e}$	0.42 ± 0.10	231.4	4.7σ
$\delta C_{\mathrm{LL}}^{\mu}$	-0.43 ± 0.07	213.6	6.3σ

All observables 2023 $\left(\chi_{\mathrm{SM}}^{2}=231.3\right)$			
	b.f. value	$\chi_{\min }^{2}$	Pull ${ }_{\mathrm{SM}}$
δC_{9}	-0.96 ± 0.13	230.7	6.3σ
δC_{9}^{e}	0.21 ± 0.16	269.2	1.3σ
δC_{9}^{μ}	-0.69 ± 0.12	240.4	5.5σ
δC_{10}	0.15 ± 0.15	270.0	1.0σ
δC_{10}^{e}	-0.18 ± 0.14	269.3	1.3σ
δC_{10}^{μ}	0.16 ± 0.10	268.3	1.6σ
δC_{LL}	-0.54 ± 0.12	249.1	4.7σ
$\delta C_{\mathrm{LL}}^{e}$	0.10 ± 0.08	269.2	1.3σ
$\delta C_{\mathrm{LL}}^{\mu}$	-0.23 ± 0.06	257.4	3.7σ

$\delta C_{\mathrm{LL}}^{\ell}$ basis corresponds to $\delta C_{\mathbf{9}}^{\ell}=-\delta C_{\mathbf{1 0}}^{\ell}$.
absence says more than presence
FRANK HERBERT
(Dune)

THANKS FOR YOUR ATTENTION

