

Paper Presentation: Enhancing the light yield of $\text{He:}CF_4$ based gaseous Detector

G. Dho

WHAT WHY WHO

- What: Paper on the studies of the different amplification structures and addition of a strong electric field below the last GEM plane
- Why: Optimisation of the amplification studies for larger light yield
- Who: Giorgio Dho, Elisabetta Baracchini with help and support from Davide Pinci
- Where: Different journals under consiration, taking into account OA policies.

JINST Meas. Sci. Tech. (pending OA policy) EPJC Astro. Phys Elsevier

To be decided

SUMMARY

48 Contents

49	1	Introduction	1				
50	2	Scintillating properties of the He:CF ₄ gas 2					
51	3	Maxwell simulation	3				
52	4	LEMOn experimental setup	8				
53		4.1 sCMOS images analysis	10				
54		4.2 GEMs electrodes current analysis	11				
55	5	MANGO Experimental setup 13					
56		5.1 Datasets	14				
57	6	sCMOS images analysis	15				
58		6.1 Light yield as a function of the charge gain	16				
59		6.2 Enhancing the light yield through the addition of strong induction field	19				
60		6.3 Energy resolution 23					
61		6.4 Diffusion within the amplification stage	24				
62	7	Discussion 26					
63	8	Conclusions 29					

SECTION I: INTRODUCTION

- Contextualise CYGNO in the dark matter search
- The optical readout allows to image large areas, but the solid angle covered can be as small as 10⁻⁴
- Maximising the light production is key for low threshold

SECTION II: SCINTILLATING PROPERTIES HE:CF₄

- The general features of the scintillating spectrum of He:CF₄ are briefly introduced
- In CF₄, light produced by neutral fragmentation, charge from ionising fragmentation

• Passing from 0 to high field, light is first produced \rightarrow low degradation of energy res can be expected

SECTION III: MAXWELL SIMULATION

- Ansys Maxwell program used to simulate the electric field of the experimental setup (TPC) and GEMs
- The uniformity of the field in the induction gap was confirmed (the gap between the last GEM and a new induction electrode)
- However, a hundred of micrometer away from GEM holes the fields are far from constant

- The profile of the electric field is studied on an axis perpendicular to the GEM plane in three conditions
 - Low V_{q} , no induction field
 - High V_{q} , no induction field
 - Low V_{q} , high induction field

SECTION III: MAXWELL SIMULATION (II)

- Increasing V_a enhances the field strength without changing the structure
- A strong E_{mesh} modifies the shape of the profile generating a region below the GEM where light production and amplification can take place
- To quantify the electric field intensity, the value is averaged in 3 regions

SECTION III: MAXWELL SIMULATION (III)

- The induction field does not affect the field above the GEM
- The induction field increses the field inside the GEM hole, but less than $V_{\mbox{\tiny q}}$
- The field below the GEM is strongly enhanced up to values where amplification is achievable
- *T* GEM has intrinsically lower fields, so the induction field is relatively larger

SECTION IV: LEMON

- LEMOn detector: 20x24 cm² readout area and 20 cm drift, effective granularity 125 x 125 μm²)
- Studies on the light amplification induce\d by electric field below the last GEM extended with LEMOn prototype and an ITO glass (T=0.9)
- ⁵⁵Fe source (5.9 keV X-ray) of 115 MBq produces current signals well above the sensitivity of the LEMOn current reader (10 nA)
- The light measurements used 1 s exposure and average light output on different areas (after noise pedestal subtraction)

SECTION IV: LEMON (II)

• Below 10 kV/cm 3U is constant

G.Dho

- Above 10 there is a rise in charge → Charge is produced
- The amount of charge created can be evaluated from the ITO after taking into account for the sharing of electrons between 3D and ITO

- Total sum of the charge is zero (gray)
- 3U collects ions from 3rd stage of amplification (magenta)
- ITO (red) and 3D (blue) share the electrons generated by the amplification
- If any new charge is generated in the induction:
 - 3D and 3U collect the ions
 - ITO only collects electrons

14/09/2023

9

SECTION V: MANGO

- MANGO detector used to extend the induction field study to other GEM configurations and He concentrations (60% or 70%)
- MANGO is 10x10 cm² readout area with variable drift gap (0.8 cm here)
- Metallic mesh employed as induction electrode (T=0.55)
- **ttt:** Stack of 3 thin GEMs (50 μ m thick, 70 μ m hole diameter, 140 μ m pitch)
- **TT:** Stack of 2 thicker GEMs (125 μ m thick, 175 μ m hole diameter, 350 μ m pitch)

10

• Tt: Stack of 1 T GEM and a t one

G.Dho

SECTION V: MANGO (II)

- ⁵⁵Fe source of 48 kBg allows an event by event analysis of the images
- Camera exposure 0.5 s exposure ٠
- Optimisation of the amplification structure based on the ٠ analysis of light yield, energy resolution and intrinsic diffusion

Intrinsic diffusion

14/09/2023

G.Dho

SECTION VI: IMAGE ANALYSIS (CHARGE GAIN)

• Characterisation of the setups with regular operation

G.Dho

SECTION VI: IMAGE ANALYSIS (CHARGE GAIN II)

• The gain can be parametrised as a function of a *reduced field* (Σ) inside the GEM holes as (T.N. Thorpe, S.E. Vahsen, 10.1016/j.nima.2022.167438)

$$\Gamma = \frac{ln(G)}{n_g pt} = A_0 + B_0 \Sigma = A_0 + \frac{B_0}{pn_g t} V_g$$

$$\sum = \frac{V_g}{n_g pt}$$

$$= \frac{V_g}{n_g pt} - (\Gamma) \text{ reduced gain} - \mathbf{A_0, B_0 free parameters} - \mathbf{t} \text{ thickness of GEM} - \mathbf{n_g number of GEMs} - \mathbf{v_g sum of voltage across GEMs}$$

- Table obtained by fitting the data of previous slide
- The consistency of the parameters suggests the parametrisation is correct within the uncertainties
- Good understanding of the multiplication process

Config	Colour	$\begin{bmatrix} 0 \end{bmatrix} \frac{1}{torr \cdot cm}$	$\sigma_{[0]} \; rac{1}{torr \cdot cm}$	$\begin{bmatrix} 1 \end{bmatrix} \frac{1}{torr \cdot cm \cdot V}$	$\sigma_{[1]} \; rac{1}{torr \cdot cm \cdot V}$
ttt 60/40	Black	-0.36	0.14	0.00106	0.00011
Tt 60/40	Green	-0.7	0.2	0.0012	0.0004
Tt 70/30	Cyan	-0.6	0.2	0.0012	0.0003
Tt $70/30$	Dark Green	-0.49	0.19	0.0011	0.0002
TT 60/40	Blue	-1.6	0.9	0.0017	0.0007
TT 70/30	Red	-1.6	1.0	0.0018	0.0006

Section VI: Image Analysis $(E_{IND} II)$

• Employing the parametrisation of the gain, the reduced field can be expanded with a term to include the influence of E_{mesh} , as suggested by Maxwell simulations

G.Dho

Section VI: Image Analysis $(E_{IND} III)$

• The exponential part is studied after removing the linear contribution

As suggested by simulations, structures with T last GEM generate larger light enhancement

G.Dho

- The **intensity** of the light increase depends on the last GEM
- The data are fitted in order to find the breaking point of the exponential growtł

$$a + b \cdot e^{cE_M - d}$$

• The helium content modifies the breaking point

$$\mathsf{E}_{\mathsf{break},60/40}$$
 = (9.7 \pm 0.8) kV/cm

$$\rm E_{\rm break,70/30}$$
 = (8.7 \pm 0.7) kV/cm

As for the gain scan, more helium requires lower field for the phenomenon to begin

G.Dho

SECTION VI: IMAGE ANALYSIS (E RESOLUTION)

- Best energy resolution obtained with stronger fields and higher gain (*ttt*)
- Energy resolution roughly constant with V_a

- Energy resolution is constant or improves with field if the last GEM is thin
- At the breaking point the *TT* GEMs have a clear worsening of the resolution

SECTION VI: IMAGE ANALYSIS (INTRINSIC DIFFUSION)

- ttt clearly worsens with the applied voltage
- Tt has the lowest diffusion among all (only two GEMs and the granularity copes with the GEM pitch)

- Expected as extra light is generated out o
- Expected as extra light is generated out of the focus

SECTION VII: DISCUSSION

- Innovative way to enhance light yield with He:CF₄ mixture
- The induction field allows any structure to reach larger light yield

		Integral	E res $(\%)$	Diff $[\mu m]$
	min	9510 ± 40	16.0 ± 0.3	320 ± 4
ttt	$\max V_{GEM}$	28400 ± 110	16.6 ± 0.3	412 ± 5
	max E_{Mesh}	33500 ± 140	13.8 ± 0.3	388 ± 5
	min	3410 ± 20	28.0 ± 1.5	260 ± 3
TT	$\max V_{GEM}$	5090 ± 30	31.0 ± 0.6	255 ± 3
	max E_{Mesh}	58800 ± 300	25.7 ± 0.5	356 ± 5
	min	4600 ± 30	25.2 ± 0.5	245 ± 3
Tt	$\max V_{GEM}$	7700 ± 40	27.8 ± 0.5	245 ± 3
	$\max E_{Mesh}$	11800 ± 50	26.8 ± 0.5	280 ± 4

SECTION VII: DISCUSSION (II) • Innovative way to enhance light yield with He:CF4 mixture ttt max VGEM max VGEM max VGEM min max VGEM min <

		Integral	E res $(\%)$	Diff $[\mu m]$
	\min	9510 ± 40	16.0 ± 0.3	320 ± 4
ttt	$\max V_{GEM}$	28400 ± 110	16.6 ± 0.3	412 ± 5
	max E_{Mesh}	33500 ± 140	13.8 ± 0.3	388 ± 5
	\min	3410 ± 20	28.0 ± 1.5	260 ± 3
TT	$\max V_{GEM}$	5090 ± 30	31.0 ± 0.6	255 ± 3
	max E_{Mesh}	58800 ± 300	25.7 ± 0.5	356 ± 5
	\min	4600 ± 30	25.2 ± 0.5	245 ± 3
Tt	$\max V_{GEM}$	7700 ± 40	27.8 ± 0.5	245 ± 3
	max E_{Mesh}	11800 ± 50	26.8 ± 0.5	280 ± 4

• Each structure excels in a particular feature

		E_{Mesh} [kV/cm]	Integral	E res $(\%)$	Diff $[\mu m]$
	ttt	15 ± 0.3	33500 ± 140	13.8 ± 0.3	388 ± 5
Max E _{Mesh}	TT	14 ± 0.3	58800 ± 300	25.7 ± 0.5	356 ± 5
The shi	Tt	12.8 ± 0.2	11830 ± 50	26.8 ± 0.5	280 ± 4

- ttt Energy resolution
- *TT* light yield

- *Tt* intrinsic diffusion
- Application to many fields depending optimisable depending on need

- Conclusion with cyclical style to adhere to the introduction
- Highlight on the improvements possible with the strong induction field introduction for a He:CF₄ gas mixture
- Presenting the agreement of the simulation estimation with the experimental results
- Focus on the versatility of the different amplification structures depending on the experimental needs

BACKUP

Threshold 1 or $0.5 \text{ keV}_{\text{eff}}$

• The WIMP masses which can induce detectable recoils depend on the E_{thr}

$$E_{max} = \frac{1}{2}m_{\chi}r(v_{lab}\cos\gamma + v_{esc})^2$$

	1 keV _{ee}		0.5 keV_{ee}		
	$E_{thr,nr}$ (keV _{nr})	Min DM mass (GeV/c^2)	$E_{thr,nr}$ (keV _{nr})	Min DM mass (GeV/c^2)	
Н	1.4	0.5	0.8	0.3	
He	2.1	1.0	1.2	0.7	
С	3.1	1.9	1.8	1.4	
F	3.8	2.5	2.2	1.9	

• Also it modifies the part of the velocity distribution which can cause a recoil

DIFFUSION MEASUREMENT

- ⁵⁵Fe emits X-rays of 5.9 keV which induce ERs travelling for O(100) μ m in the gas
- Round spots on • The diffusion contribution prevails over the topology of the original track camera images
- Given the extremely small drift gap, the intrinsic diffusion of the **amplification stage dominates** ٠
- A double Gaussian fit is applied to the spatial distribution of the overlap of all the ⁵⁵Fe signal once ٠ their barycentres are aligned

S

G

200

Method independent of the light intensity •

Dho

INCREASE AT LOW FIELD

E_{mesh} = 1

kV/cm

Increase due to better defined field lines below the last GEM

S

ENERGY RESOLUTION

