Performance of bis-MSB wavelength shifters in He-40%CF₄

Rita C. Roque, R. Daniel P. Mano, Joaquim M.F. dos Santos, Fernando D. Amaro, and Cristina M.B. Monteiro LIBPhys, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal

H₂C

CH₃

Experimental setup

Bis-MSB is able to convert the UV photons emitted

Gas outlet

⁵⁵Fe x-rays

Drift mesh

Charge readout

The inclusion of the bis-MSB does not

The number of avalanche electrons and the energy resolution stay the same.

	Total emission (o)	Visible emission (F)	bis-MSB Sample A	bis-MSB Sample C
Growth factor	0.0224(22)	0.0224(23)	0.0223(22)	0.0220(22)
%FWHM _{min}	14.36(17)	14.43(22)	14.64(23)	14.59(23)

Optical readout

$$\begin{split} & \underset{\text{scintillation peak}}{\text{Amplitude of the scintillation peak}} & \underset{\text{55}\text{Fe x-rays}}{\text{Energy of the 55}\text{Fe x-rays}} \\ & \eta_{\gamma}^{LAAPD} = \frac{A_s}{A_X} \times \frac{E}{w(Si) \times \mu_{QE}} \\ & \underset{\text{direct x-ray peak}}{\text{Amplitude of the silicon}} & \underset{\text{of the LAAPD}}{\text{Average ray of the LAAPD}} \end{split}$$

Average response of the LAAPD to the incoming photons

The bis-MSB does not affect the optical readout:

The amount of photons being collected by the LAAPD is similar with and without the bis-MSB.

	Total emission (Δ)	Visible emission (Δ)	bis-MSB Sample A	bis-MSB Sample C
Growth factor	0.0211(22)	0.021(4)	0.022(4)	0.021(4)
%FWHM _{min}	18.26(34)	19.85(34)	19.0(4)	19.04(35)

Optical readout

The bis-MSB does not affect the optical readout:

The amount of photons being collected by the LAAPD is similar with and without the bis-MSB.

Why?

Loss of converted photons?

Due to the isotropic emission by the bis-MSB, half of the converted UV photons are emitted away from the LAAPD.

Absorption of the visible component?

He-40%CF₄+bis-MSB

Shifted spectrum

600

Wavelength [nm]

The bis-MSB layer is clearly semi-opaque, meaning that it also absorbs part of the visible radiation. If this attenuation is high

800

Filter transmission

N-B270 glass window

ORCA-Quest

CYGNO Camera QE

1000

enough, it could compensate for the optical gain obtained by the conversion of the UV photons.

1.6

1.4 1.2

1.0

0.8

0.6

0.4

0.0 200

He-40%CF4

Original spectrum

400

Would a thinner layer of bis-MSB help?

bis-MSB

Grazie per l'attenzione Any questions or suggestions?

(1)

UNIVERSIDADE D COIMBRA

LIBPhys-UC

R. Roque acknowledges the FCT PhD studentship (ref. SFRH/BD/143355/2019). This work is supported by CERN/FIS-INS/0026/2019, CERN/FIS-TEC/0038/2021 and UID/FIS/04559/2020 (LIBPhys), funded by national funds through FCT/MCTES and co-financed by the European Regional Development Fund (ERDF) through the Portuguese Operational Program for Competitiveness and Internationalization, COMPETE 2020.

