Cosmological phase transitions with fast bubbles

Aleksandr Azatov

SISSA and INFN Trieste

24/04/2023 PetcovFEST

together with Barni, Chakraborty, Vanvlasselaer, Yin

- Congratulations Serguey on your 70th birthday!
- I wish you a lot and a lot of years of active research!

Introduction

- False and true vacua are separated by the potential barrier
- Transition occurs by bubble nucleation (Coleman 77)

 $\Gamma(T) \sim \max\left[T^4 \left(\frac{S_3}{2\pi T}\right)^{3/2} e^{-S_3/T}, R_0^{-4} \left(\frac{S_4}{2\pi}\right)^2 e^{-S_4}\right]$ Bubbles of true vacua are formed, which later expand

Fast bubbles

Forces acting on the bubble

- Driving force $\sim V_{true} V_{false}$ due to the energy difference between true and false vacuum
- Friction forces due the bubble wall collision with plasma particles. These forces must vanish in the limit of zero temperature $T \rightarrow 0$
- ► If $T \ll \Delta V^{1/4}$ the friction forces cannot prevent bubbles from reaching relativistic velocities
- \blacktriangleright in the regime of supercooling i.e. $\mathcal{T} \ll \Delta V^{1/4}$ bubble must be relativistic

How fast?

- ▶ the velocity is controlled by the balance of the forces acting on the bubble, calculation of the friction from plasma is a very complicated task, but for $\gamma \gg 1$ things simplify, since we can consider individual particle collision on the bubble
- $1 \rightarrow 1$ transition $\Delta P \sim \Delta m^2 T^2$ 0903.4099
- 1 ightarrow 1+ soft radiation $\Delta P \sim \gamma \Delta m T^3$ 1703.08215

If temperature is sufficiently low or/and there are no vectors changing their mass $\gamma \gg 1$

Why fast bubbles are interesting?

strong signals in stochastic GW background

Why fast bubbles are interesting?

Collision energy between the bubble wall and the plasma particle can be much larger than the transition scale $% \left({\left[{{{\rm{D}}_{\rm{B}}} \right]_{\rm{B}}} \right)$

$$E \sim \sqrt{\gamma T v} \gg v$$
 if $\gamma \gg 1$

Why fast bubbles are interesting?

Collision energy between the bubble wall and the plasma particle can be much larger than the transition scale

$$E \sim \sqrt{\gamma T v} \gg v$$
 if $\gamma \gg 1$

- Is it consistent to ignore all other degrees of freedom which are decoupled at the phase transition?
- What effect these heavy fields can have?

$1 \rightarrow 1$ transition, with mixing $_{\it 2010.02590}$

Consider the following lagrangian,

$$\mathcal{L}_{\text{fermion}} = i\bar{\chi}\partial \chi + i\bar{N}\partial N + M\bar{N}N + Y_{\text{mixing}}\phi\bar{\chi}N \\ M \gg \langle \phi \rangle$$

N-field is decoupled at PT and its density is suppressed by exp(-M/T)

Will N field during χ - wall scattering? Image: symmetric phase broken Momentum is not conserved along z direction, $\chi \to N$ conversion is allowed

$1 \rightarrow 1$ transition, with mixing $_{\it 2010.02590}$

Consider the following lagrangian,

$$\begin{aligned} \mathcal{L}_{\text{fermion}} &= i \bar{\chi} \partial \chi + i \bar{N} \partial N + M \bar{N} N + Y_{\text{mixing}} \phi \bar{\chi} N \\ M &\gg \langle \phi \rangle \end{aligned}$$

N-field is decoupled at PT and its density is suppressed by $\exp(-M/T)$

 $\textit{N}\xspace$ field production during χ - wall scattering

$$\begin{split} n_N &\sim \underbrace{\int \frac{d^3 p}{(2\pi)^3} f_p}_{\text{Incident } \psi \text{ density}} \underbrace{P(\chi \to N)}_{\text{Probability of transition}} \sim T^3 P(\chi \to N) \\ P(\psi \to N) \sim (\text{mixing angle})^2 \sim \frac{Y_{\text{mixing}}^2 \langle \phi \rangle^2}{M^2} \end{split}$$

$$\frac{T^3 \frac{Y_{\text{mixing}}^2 \langle \phi \rangle^2}{M^2} \gg (MT)^{3/2} e^{-M/T}}{\text{Mis extra density will be much}}$$

larger than the equilibrium value.

$1 \rightarrow 1$ transition, with mixing

Wall width is finite, $L \neq 0!$

processes with momentum loss $\Delta p_z L \gg 1$ must be suppressed, since L^{-1} is a typical energy scale of the interaction with the wall.

Situation is similar to the neutrino oscillations in matter. If the $\Delta p_z L \gg 1$ is satisfied the evolution is "adiabatic", so the state remains in the lightest flavour:

 $\chi \to \chi_{\langle \phi \rangle \neq \mathbf{0}}$

 $\psi_{\langle \phi \rangle \neq 0}$ is the lightest eigenstate in the broken phase (inside the bubble)

We need to be in the "anti-adiabatic" regime

$$\Delta p_z L \lesssim 1
ightarrow rac{M^2}{E} \lesssim L^{-1}$$

New mechanism of heavy particle production

$$n_{heavy} \sim rac{Y^2 \langle \phi
angle^2}{M_{heavy}^2} T_{nuc}^3$$

Applications?

New mechanism of heavy particle production

$$n_{heavy} \sim rac{Y^2 \langle \phi
angle^2}{M_{heavy}^2} T_{nuc}^3$$

Applications?

► New contribution to the friction on the bubble wall $\mathcal{P}_{\text{mixing}} \sim T^2 Y^2 \langle \phi \rangle^2 \theta (\gamma T - M^2 L)$

New mechanism of heavy particle production

$$n_{heavy} \sim rac{Y^2 \langle \phi
angle^2}{M_{heavy}^2} T_{nuc}^3$$

Applications?

New contribution to the friction on the bubble wall $\mathcal{P}_{\text{mixing}} \sim T^2 Y^2 \langle \phi \rangle^2 \theta (\gamma T - M^2 L)$

Possibilities for DM model building, the heavy particle which is produced can be a DM.

New mechanism of heavy particle production

$$n_{heavy} \sim rac{Y^2 \langle \phi
angle^2}{M_{heavy}^2} T_{nuc}^3$$

Applications?

- ► New contribution to the friction on the bubble wall $\frac{\mathcal{P}_{\text{mixing}} \sim T^2 Y^2 \langle \phi \rangle^2 \theta(\gamma T - M^2 L)}{P_{\text{mixing}}}$
- Possibilities for DM model building, the heavy particle which is produced can be a DM.
- Baryogenesis : the process of heavy particles production is out of equilibrium

DM production

$$\lambda \phi^2 \Phi_{\rm heavy}^2 + M_{\rm heavy}^2 \Phi_{\rm heavy}^2$$

there will be $\phi \to \Phi_{\rm heavy} \Phi_{\rm heavy}$ production during the transition through the wall. Since the trilinear vertex $\phi \Phi \Phi$ is position dependent and momentum is not conserved.

$$\Omega_{\phi, \text{tot}}^{\text{today}} h^2 \approx \left(\frac{T_{\text{nuc}}}{T_{\text{reh}}}\right)^3 \times \left[\underbrace{0.1 \times \left(\frac{0.03}{\lambda}\right)^2 \left(\frac{M_{\phi}}{100 \text{ GeV}}\right)^2}_{\text{FO}} + \underbrace{5 \times 10^3 \times \lambda^2 \frac{v}{M_{\phi}} \left(\frac{v}{\text{GeV}}\right)}_{\text{BE}}\right].$$

DM production in phase transition

DM production during the EW phase transition?

SM extended with a real singlet to achieve the first order phase transition

Summary

- First order phase transitions with ultra relativistic bubbles in the early universe lead to very interesting scenarios.
- Particles seemingly decoupled are playing an important role and can be produced abundantly. Important phenomenological consequences.
 - Modification of the bubble expansion velocity.
 - DM production
 - Models of baryogenesis
- all of these must be accompanied with strong stochastic GW signal observable at current/future experiments.