Activities of the FCFA FCR Panel

Emanuele Bagnaschi (INFN LNF/CERN) on behalf of the ECR session organizing committee

12 October 2023 Second ECFA workshop on e+e- Higgs/EW/Top factories Paestum, Italy

The ECFA and the ECR Panel

ECFA

- ECFA -- European Committee for Future Accelerators
- All countries (+CERN) elect representatives to sit in the "plenary" FCFA
- · One representative per country in the "restricted" ECFA
- Since 2020 an Early Career Researcher (ECR) Panel exists. It has representative both in PECFA and RECFA.
- https://ecfa.web.cern.ch/

The ECFA and the ECR Panel

ECR Panel

The objective of the ECFA Early-Career Researchers (ECR) Panel is for its members to discuss all aspects that contribute in a broad sense to the future of the research field of particle physics. In its advisory role to ECFA, the panel reports to ECFA on a regular basis. An annual report of the ECFA ECR Panel is added as a standing item to the agenda of Plenary ECFA meetings.

KOLE

- ECR community link to the update of the European Strategy via the ECFA
- Activity divided in various working groups.
 For a full overview, see https://arxiv.org/abs/2212.11238
- · You should get involved!

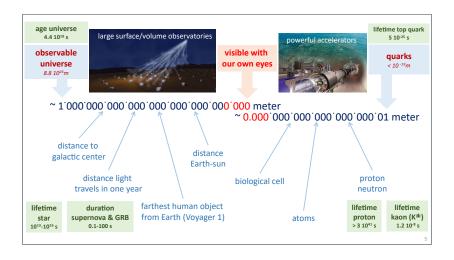
Composition

- 3 representatives for each ECFA country, +1 for the major laboratorities
- Composed of researchers going from PhD to assistant professors
- Theorists/phenomenologists and experimentalists work together with the aim of representing the diverse viewpoints of the community
- 3-4 panel meetings per year, handled by Organization Committee (3 members)
- 5 ECR delegates in Plenary ECFA, 1 delegate in Restricted FCFA

The ECFA ECR workshop at CERN

Day agenda

- Held at CERN on the 27th of September
- Topical presentations with ample discussion time
- Four main sessions: overview; challenges; different viewpoints; people and money
- Slides and recordings are available on INDICO



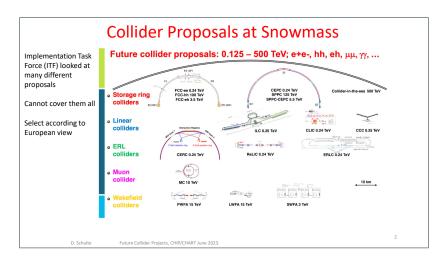
The ECFA ECR workshop at CERN

Day agenda

- Held at CERN on the 27th of September
- Topical presentations with ample discussion time
- Four main sessions: overview; challenges; different viewpoints; people and money
- Slides and recordings are available on INDICO

[Jorgen D'Hondt, Towards the future of particle physics]
[slides, recording]

Requirements for the next HEP machine

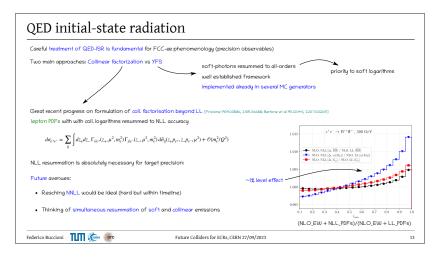

- · From pure physics
 - Capable of H and t physics complementary to/beyond LHC and HL-LHC
 - Capable of Z and W physics beyond currently known
 ⇒an e⁺e⁻ collider covering a region of 90-350 GeV centre of mass energy (cme)
- · Somewhat physics related issues
 - It is good to start data taking with some overlap with the HL-LHC operation since the results might influence each other's scientific programme.
 - ⇒ A machine which can be built within the next 10~15 years.
 - Can be upgraded to probe higher energy scales if physics result motivates.
 - Should not damage the diversity of particle physics activities.
 - ⇒A machine with a reasonable cost
- HEP sociology
 - Continuity in the HEP programme to sustain the community
- Other issues have become increasingly important
 - Environmental impact, energy consumption, resource availability, attractivity in technology, impact on industries, spinoffs, ...

27/09/2023 T. Nakada

Landscape for the future colliders

0

[Tatsuya Nakada, The future collider landscape] [slides, recording]


[Daniel Schulte & Tatiana Pieloni, Input from accelerator physicists]

slides

												Blondel, Janot 2106.138
								Observable	present		FCC-ee	Comment
									value ± error	Stat.	Syst.	leading exp. e
Baseline FCC-ee ope	eration mod	el (+ po	otential r	esonant Higg	s for el	ectron	Yukawa)	m _Z (keV)	91186700 ± 2200	4	100	From Z line shape Beam energy calibra
Working point	Z. years 1-2	Z. later	WW	HZ	l t	t	(s-channel H)	Γ ₂ (keV)	2495200 ± 2300	- 4	25	From Z line shape
√s (GeV)	88, 91, 5	14	157, 163	240	340-350	365	m _H	12 (10.17	2100200 2 2000			Beam energy calibro
Lumi/IP (10 ³⁴ cm ⁻² s ⁻¹)	115	230	28	8.5	0.95	1.55	(30)	$\sin^2 \theta_W^{eff} (\times 10^6)$	231480 ± 160	2	2.4	from App at Z
Lumi/year (ab ⁻¹ , 2 IP)	24	48	- 6	1.7	0.2	0.34	(7)					Beam energy calibra
Physics Goal (ab ⁻¹)	150		10	5	0.2	1.5	(20)	$1/\alpha_{\rm OED}(m_{\rm Z}^2)(\times 10^3)$	128952 ± 14	3	small	from App off
Run time (vear)	2	2	2	3	1	4	(3)					QED&EW errors domi
real came (year)			-	10 ⁶ HZ	10		(0)	$R_{\ell}^{Z} (\times 10^{3})$	20767 ± 25	0.06	0.2-1	ratio of hadrons to lep
Number of events	$5 \times 10^{12} \text{ Z}$		108 WW	+	+2006		(6000)					acceptance for lept
	0 × 10 Z	L	10 WW	25k WW → H	+50k WV		(0000)	$\alpha_{\rm s}({\rm m_Z}^2) \; (\times 10^4)$	1196 ± 30	0.1	0.4-1.6	
				20K W W → 11	TJUK W	W -7 II		$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic cross sec luminosity measures
								$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	
hysics at the Z-pole	, W⁺W⁻@thr	eshold	~ m _w Hig	gs factory, tt	@thresh	nold ~	mt	$N_{\nu}(\times 10^{3})$ $R_{b.}(\times 10^{6})$	2996 ± 7 216290 ± 660	0.005	< 60	Luminosity measurer ratio of bb to had
					-		m _t	R _b (×10 ⁶)		0.3		Z peak cross sect Luminosity measurer ratio of bb to had stat. extrapol. from
thysics at the Z-pole great opportunities f					-		m _t	R _b (×10 ⁶) A _{FB} , 0 (×10 ⁴)				Luminosity measure ratio of bb to hac stat. extrapol. from b-quark asymmetry at Z
					-		m _t	R _b (×10 ⁶)	216290 ± 660	0.3		Luminosity measures ratio of bb to had stat. extrapol. from b-quark asymmetry at Z from jet cl τ polarization asymm
great opportunities f	or precision	QCD:			-		m _t	R _b (×10 ⁶) A _{FB} , 0 (×10 ⁴)	216290 ± 660 992 ± 16	0.3	1-3	Luminosity measures ratio of bb to had stat. extrapol. from b-quark asymmetry at Z from jet ch τ polarization asymm τ decay ph
	or precision	QCD:			-		m _t	$R_{\rm b}~(\times 10^6)$ $A_{\rm FB}^{\rm b}, 0~(\times 10^4)$ $A_{\rm FB}^{\rm col, \tau}~(\times 10^4)$	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12	0.3 0.02 0.15	1-3	Luminosity measurer ratio of bb to had
great opportunities f	or precision	QCD:	a _s , jets, h	nadronization	model:	S		$R_b (\times 10^6)$ $A_{FB}^b, 0 (\times 10^4)$ $A_{FB}^{bar,r} (\times 10^4)$ τ lifetime (fs) τ mass (MeV) τ leptonic ($\mu\nu_\mu\nu_\tau$) B.R. (?	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12 5 173.88 ± 0.04	0.3 0.02 0.15 0.001 0.004 0.0001	1-3 <2 0.04 0.04 0.003	Luminosity measurer ratio of bb to hac stat. extrapol. from b-quark asymmetry at Z from jet cl τ polarization asymm τ decay ph radial align momentum e/μ/hadron separa-
great opportunities f	or precision	QCD:	a _s , jets, h	nadronization	model:	S		$R_b (\times 10^6)$ $A_{FB}^{bol}, 0 (\times 10^4)$ $A_{FB}^{pal,\sigma} (\times 10^6)$ τ lifetime (fs) τ mass (MeV)	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12	0.3 0.02 0.15 0.001 0.004	1-3 <2 0.04 0.04	Luminosity measure ratio of bb to has stat. extrapol. from b-quark asymmetry at Z from jet cl τ polarization asymm τ decay ph radial align momentum $e/\mu/\text{hadron separa}$
great opportunities f	or precision	QCD:	a _s , jets, h	nadronization	model:	S		$\begin{split} &R_{\rm b} \; (\times 10^6) \\ &A_{\rm PB}^{\rm b} \; (\times 10^4) \\ &A_{\rm PB}^{\rm col} \; (\times 10^4) \\ &\tau \; {\rm lifetime} \; (6) \\ &\tau \; {\rm mass} \; ({\rm MeV}) \\ &\tau \; {\rm leptonic} \; (\mu \nu_{\mu} \nu_{\tau}) \; {\rm B.R.} \; (2) \\ &m_{\rm W} \; ({\rm MeV}) \end{split}$	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.88 ± 0.12 6) 17.38 ± 0.01 80350 ± 15	0.3 0.02 0.15 0.001 0.004 0.0001 0.25	1-3 <2 0.04 0.04 0.003 0.3	Luminosity measurer ratio of bh to hac stat. extrapol. from b-quark asymmetry at Z from jet cf \(\tau \) polarization asymm \(\tau \) decay ph radial align momentum \(\eta \) (p/hadron separa-From WW threshold Beam energy callibrations.
The foreseen precisi	on is staggi	QCD: ering: attracti	a _s , jets, ł ve challe	nadronization	models	S		$R_b (\times 10^6)$ $A_{FB}^b, 0 (\times 10^4)$ $A_{FB}^{bar,r} (\times 10^4)$ τ lifetime (fs) τ mass (MeV) τ leptonic ($\mu\nu_\mu\nu_\tau$) B.R. (?	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12 5 173.88 ± 0.04	0.3 0.02 0.15 0.001 0.004 0.0001	1-3 <2 0.04 0.04 0.003	Luminosity measurer ratio of bit to has stat. extrapol. from b-quark asymmetry at Z from jet ct τ polarization asymmetry and τ decay ph radial align momentum c/ μ /hadron separity from WW threshold Beam energy calibrity from WW threshold From WW threshold with the statement of the statement
great opportunities f	on is staggi	QCD: ering: attracti	a _s , jets, ł ve challe	nadronization	models	S		$\begin{split} R_{L} & (\times 10^{5}) \\ A_{PB}^{*}, 0 & (\times 10^{4}) \\ A_{PB}^{*}, 0 & (\times 10^{4}) \\ T & \text{Histerine (fs)} \\ \tau & \text{mass (MeV)} \\ \tau & \text{teptonic } (\mu_{\mu_{\mu}\nu_{\ell}}) \text{ B.R. (2)} \\ m_{W} & (\text{MeV}) \\ \hline \Gamma_{W} & (\text{MeV}) \end{split}$	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12 $6) 17.38 \pm 0.04$ 80350 ± 15 2085 ± 42	0.3 0.02 0.15 0.001 0.004 0.0001 0.25	1-3 <2 0.04 0.04 0.003 0.3	Luminosity measure ratio of bit to has stat. extrapol. from b-quark asymmetry at Z r polarization asymm radial align momentum c/µ/hadron separa From WW threshold Beam energy calibr From WW threshold Beam energy calibr Beam energy calibr
The foreseen precisi this poses astoundi	for precision on is staggering but also thin the SM	QCD: ering: attracti of equ	a _s , jets, h ve challe ivalent a	nadronization	models	S		$\begin{split} &R_{\rm L} \left(\times 10^6\right) \\ &A_{\rm PB}^{\rm ret}, 0 \left(\times 10^4\right) \\ &A_{\rm PB}^{\rm ret}, 10^4\right) \\ &\tau \text{ lifetime (fs)} \\ &\tau \text{ listerine (fs)} \\ &\tau \text{ lesponic } \left(\mu_{\nu_{\tau}}, \nu_{\tau}\right) \text{ B.R. (3)} \\ &R_{\rm RC} \left(\times 10^6\right) \\ &R_{\rm RC} \left(\times 10^6$	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12 $6)$ 17.38 ± 0.04 80350 ± 15 2085 ± 42 1170 ± 420	0.3 0.02 0.15 0.001 0.004 0.0001 0.25 1.2	1-3 <2 0.04 0.04 0.003 0.3 0.3	Luminosity measure ratio of bit to has stat, extrapol, from b-quark asymmetry at Z τ polarization asymme τ decay ph radial align ν μ/μ hadron separa From Ww threshold Beam energy calibre From Ww threshold Beam energy calibre from from from from from the state of the phase of the state of the state of the from the state of the state of the state of the from from from from from from from from
The foreseen precisi	for precision on is staggering but also thin the SM	QCD: ering: attracti of equ	a _s , jets, h ve challe ivalent a	nadronization	models	S		$\begin{split} R_{L} & (\times 10^{5}) \\ A_{PB}^{*}, 0 & (\times 10^{4}) \\ A_{PB}^{*}, 0 & (\times 10^{4}) \\ T & \text{Histerine (fs)} \\ \tau & \text{mass (MeV)} \\ \tau & \text{teptonic } (\mu_{\mu_{\mu}\nu_{\ell}}) \text{ B.R. (2)} \\ m_{W} & (\text{MeV}) \\ \hline \Gamma_{W} & (\text{MeV}) \end{split}$	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12 $6) 17.38 \pm 0.04$ 80350 ± 15 2085 ± 42	0.3 0.02 0.15 0.001 0.004 0.0001 0.25	1-3 <2 0.04 0.04 0.003 0.3	Luminosity measures ratio of bit to had stat. extrapol. from be-quark saymmetry at Z from jet ch. To plaintain asymm r decay ply radial aligns momentum (a/µ/hot/on separe From WW threshold Beam energy calibr From WW threshold Beam energy calibr manufacture of the plaintain and the same from ratio of invis. to lept ratio of invis. to lept invision products a superior and the same from ratio of invis. to lept invision produces a superior and the same from ratio of invis. to lept invision products a superior and the same from the s
The foreseen precisi this poses astoundi calculations with exploit full of	on is staggering but also thin the SM discovery/ex	ering: attracti	as, jets, h ve challe ivalent a o power	nadronization	ory pred	S		$\begin{split} R_{b_1} & (\times 10^5) \\ A_{PB}^{\mu}, (\times 10^5) \\ A_{PB}^{\mu}, (\times 10^5) \\ A_{PB}^{\mu\nu}, (\times 10^5) \\ \tau & \text{lifetime (fs)} \\ \tau & \text{mass (MeV)} \\ \tau & \text{leptonic } (m_{p_1}\nu_{r_1}) \text{ B.R. (2)} \\ m_{W_1} & (\text{MeV}) \\ T_{W_2} & (\text{MeV}) \\ N_{\nu} & (\text{MeV}) \\ N_{\nu} & (\times 10^5) \\ N_{\nu} & (\times 10^5) \end{split}$	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12 $6)$ 17.38 ± 0.04 80350 ± 15 2085 ± 42 1170 ± 420	0.3 0.02 0.15 0.001 0.004 0.0001 0.25 1.2	1-3 <2 0.04 0.04 0.003 0.3 0.3	Luminosity measure ratio of bit to has stat, extrapol, from b-quark asymmetry at Z 7 polarization asymme r decay ph radial align c/µ/hadron separa From WW hreshold Beam energy calibre From WW threshold Beam energy calibre from ratio of invis. to lepe in radiative Z ret
The foreseen precisi this poses astoundi calculations with exploit full of	on is staggering but also thin the SM discovery/ex	ering: attracti	as, jets, h ve challe ivalent a o power	nadronization	ory pred	S		$\begin{split} R_{b_1} & (\times 10^5) \\ A_{PB}^{\mu}, (\times 10^5) \\ A_{PB}^{\mu}, (\times 10^5) \\ A_{PB}^{\mu\nu}, (\times 10^5) \\ \tau & \operatorname{ilifetime} \ (16) \\ \tau & \operatorname{mass} \ (MeV) \\ \tau & \operatorname{releptonic} \ (m_{p^2}\nu_{\tau}) \ B.R. \ (3) \\ m_{W_1} \ (MeV) \\ F_{W_2} \ (MeV) \\ R_{\nu} \ (MeV/\epsilon^2) \\ \end{split}$	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12 117.88 ± 0.01 80350 ± 15 2085 ± 42 1170 ± 420 2920 ± 50	0.3 0.02 0.15 0.001 0.004 0.0001 0.25 1.2 3 0.8	1·3 <2 0.04 0.04 0.003 0.3 0.3 small small	Luminosity measures ratio of bb to had stat. extrapol. from b-quark asymmetry at Z from jet ch \tau polarization asymm \tau decay ph radial aligns
The foreseen precisi this poses astoundi calculations wi to exploit full o theory will seri	for precision on is staggering but also thin the SM discovery/ex	ering: attracti of equ colusion	as, jets, h ve challe ivalent a n power	nges on theo	ory pred	S		$\begin{split} R_{b_1} & (\times 10^5) \\ A_{PB}^{\mu}, (\times 10^5) \\ A_{PB}^{\mu}, (\times 10^5) \\ A_{PB}^{\mu\nu}, (\times 10^5) \\ \tau & \text{lifetime (fs)} \\ \tau & \text{mass (MeV)} \\ \tau & \text{leptonic } (m_{p_1}\nu_{r_1}) \text{ B.R. (2)} \\ m_{W_1} & (\text{MeV}) \\ T_{W_2} & (\text{MeV}) \\ N_{\nu} & (\text{MeV}) \\ N_{\nu} & (\times 10^5) \\ N_{\nu} & (\times 10^5) \end{split}$	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12 117.88 ± 0.01 80350 ± 15 2085 ± 42 1170 ± 420 2920 ± 50	0.3 0.02 0.15 0.001 0.004 0.0001 0.25 1.2 3 0.8	1·3 <2 0.04 0.04 0.003 0.3 0.3 small small	Luminosity measure ratio of bit to hus stat. extrapol. from stat. extrapol. from the control of
The foreseen precisi this poses astoundi calculations with exploit full of	for precision on is staggering but also thin the SM discovery/ex	ering: attracti of equ colusion	as, jets, h ve challe ivalent a n power	nges on theo	ory pred	S		$\begin{split} &R_{b_{c}}\left(\times10^{5}\right) \\ &A_{PB,0}^{\mu}\left(\times10^{5}\right) \\ &A_{PB,0}^{\mu}\left(\times10^{5}\right) \\ &A_{PB,0}^{\mu\nu}\left(\times10^{5}\right) \\ &r_{c}^{\mu}\left(\pi10^{5}\right) \\ &r_{c}^{\mu}\left(\pi10^$	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12 (5) 17.38 ± 0.01 80350 ± 15 2085 ± 42 1170 ± 420 2920 ± 50 172740 ± 500 1410 ± 190	0.3 0.02 0.15 0.001 0.004 0.0001 0.25 1.2 1.7 45	1-3 <2 0.04 0.04 0.03 0.3 0.3 small small small	Laminosity measure ratio of bit to had seen ratio of the company o
The foreseen precisi this poses astoundi calculations wi to exploit full o theory will seri	for precision on is staggering but also thin the SM discovery/ex	ering: attracti of equ colusion	as, jets, h ve challe ivalent a n power	nges on theo	ory pred	S		$\begin{split} R_{b_1} & (\times 10^5) \\ A_{PB}^{\mu}, (\times 10^5) \\ A_{PB}^{\mu}, (\times 10^5) \\ A_{PB}^{\mu\nu}, (\times 10^5) \\ \tau & \operatorname{ilifetime} \ (16) \\ \tau & \operatorname{mass} \ (MeV) \\ \tau & \operatorname{releptonic} \ (m_{p^2}\nu_{\tau}) \ B.R. \ (3) \\ m_{W_1} \ (MeV) \\ F_{W_2} \ (MeV) \\ R_{\nu} \ (MeV/\epsilon^2) \\ \end{split}$	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12 5) 17.38 ± 0.01 80330 ± 15 2085 ± 42 1170 ± 420 2920 ± 50 172740 ± 500	0.3 0.02 0.15 0.001 0.004 0.0001 0.25 1.2 3 0.8	1·3 <2 0.04 0.04 0.003 0.3 0.3 small small	Laminosity measure ratio of bit to had several ratio of bit to had search and to be search
The foreseen precisi this poses astoundi calculations wi to exploit full o theory will seri	for precision on is staggering but also thin the SM discovery/ex	ering: attracti of equ colusion	as, jets, h ve challe ivalent a n power	nges on theo	ory pred	S		$\begin{split} &R_{b_{c}}\left(\times10^{5}\right) \\ &A_{PB,0}^{\mu}\left(\times10^{5}\right) \\ &A_{PB,0}^{\mu}\left(\times10^{5}\right) \\ &A_{PB,0}^{\mu\nu}\left(\times10^{5}\right) \\ &r_{c}^{\mu}\left(\pi10^{5}\right) \\ &r_{c}^{\mu}\left(\pi10^$	216290 ± 660 992 ± 16 1498 ± 49 290.3 ± 0.5 1776.86 ± 0.12 1738 ± 0.01 80350 ± 15 2085 ± 42 2920 ± 50 1170 ± 420 172740 ± 500 1410 ± 190 1.2 ± 0.3	0.3 0.02 0.15 0.001 0.004 0.0001 0.25 1.2 1.7 45	1-3 <2 0.04 0.04 0.003 0.3 0.3 small small small small	Laminosity measure ratio of bit to had seen ratio of the company o

[Federico Buccioni, Theory challenges: precision calculations]

[slides, recording]

[Federico Buccioni, Theory challenges: precision calculations]

Higgs physics

What we know

$$V=-\mu^2\,|\phi|^2+\lambda\,|\phi|^4$$

Anke Biekötter - JGU Mainz

[Anke Biekötter, *Theory perspective*] [slides, recording]

Higgs physics

What we actually know

$$V = -\mu^2 |\phi|^2 + \lambda |\phi|^4$$

Anke Biekötter - JGU Mainz

3

[Anke Biekötter, *Theory perspective*] [slides, recording]

Higgs physics

What we actually know

$$V = -\mu^2 |\phi|^2 + \lambda |\phi|^4$$

Good reasons to believe that the Higgs is related to BSM physics

[Dawson et al. (2209.07510)]

Anke Biekötter - JGU Mainz

[Anke Biekötter, *Theory perspective*]
[slides, recording]

3

Reflections

- ECRs need to be involved in future projects it is your future
 - In the early stages, these projects are driven by experienced senior colleagues
 - They have the luxury/duty of preparing the future, but todays ECRs will benefit from this and actually carry out the science – get involved, you can make a difference ...
- Participating in running experiments gives invaluable experience
 - Real data is not simulation, but ATLAS SCT works a lot better than the testbeam
 - Experience the full chain from detector operations to paper acceptance
 - A different experience of collaboration, analysis WGs/hierarchies, getting results
 - Some colleagues worked only on LHC expts. from 1990 until now I'm glad I did not
- Expertise is transferrable between experiments / projects
 - Figure out what you are interested in and good at look for synergies
 - I have worked on tracking/b-tagging & precision measurements at OPAL and ATLAS
- Say yes to leadership opportunities even if it upsets your plans
 - Explore different areas, learn new skills, broaden your horizons
 - Less-attractive tasks are still vital, people appreciate that you take them on
- Be prepared for setbacks, surprises and successes good luck!

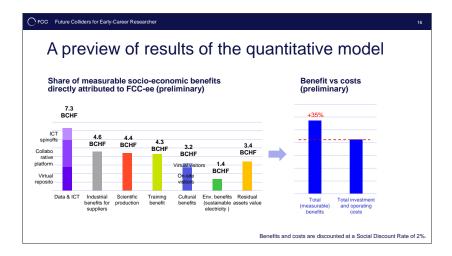
27th September 2023 Richard Hawkings

9

[Richard Hawkings, Discussion on time scale impact on ECRs] [slides, recording]

COMMON: MAINTAIN A LEADERSHIP VIA A VISION

CERN TO PROVIDE THE BEST SCIENCE AND TECHNOLOGY ARENA.


- WHAT VISION? CONSIDERATIONS AND CONCERNS
- Scientific (Higgs and?)
- Technological (HL and High Field Magnets)- RECFA MAP
- •New Detectors NEW "ALICE", "ATLAS", "CMS", "LHCb", NEW!-RECFA MAP
- · Construction: Geology, Environment
- Financial
- · ECRs
- Politics and overlap issue.

THE FUTURE REQUIRES SCIENTIFIC AND TECHNOLOGICAL VISION.

2 EXCELLENCE IS EXTREMELY HARD TO ACHIEVE AND SO EASY TO LOOSE.
Presentation to new Council delegates and Committee members 21 February 2023

16

[Eliezer Rabinovici, The view from the CERN council and ECRs]

[Francesco Giffoni & Massimo Florio, Socio-economic impact]

FCC Future Colliders for Early-Career Researcher

17

Measurable benefits vs the total public good value

- On-line surveys to representative samples of population in France, Switzerland, Germany, Israel, Italy, Japan, Poland, UK, USA: 10,448 total respondents.
- Estimation of their willingness to financially support FCC-ee, because of its perceived utility for humankind.
- Extrapolation of estimates to other potential FCC-ee contributing countries.

The values are discounted at a Social Discount Rate of 2%.

Secci, L., Giffoni, F., and Delugas, E. (2023). The value of particle physics research at CERN as public good (1.0), Zenodo, https://doi.org/10.5281/zenodo.7766949

[Francesco Giffoni & Massimo Florio, Socio-economic impact]

Energy management

Environmental report

29 August 2023

Dismissal of oil-based transformers

Replacement of GHG in detectors
 Inventory of Scope 1, 2, 3 emissions, biodiversity.

Noise & waste managements....

Coordinates the editing of the CERN

R. Losito, Sustainability and future accelerators, challenge or opportunity?

Waste management

[Roberto Losito, Sustainability of FCs]

Environmental noise

Soil protection

Hazardous substances

What are the considerations for choosing the next step

What do WE (the ECR community) find most important in the considerations for a next collider

We will not pick the next collider today, but we ask the questions that need answering

- What are the physics questions we want answered?
- How can we make sure that the probable physics is diverse enough?
- Are several smaller colliders preferable over one large collider for the diversity of the achieved physics program?
 What are the upgrade possibilities of proposed projects?
- How precise can we get, taking realistic improvements in theory predictions into account?
- How can we make sure the collaboration with other energy range experiment is ensured?
- Is the future collider programme compatible with ECR careers considering possible large time gaps after HL-LHC runtime?
- Would/could muon colliders make it in time to follow the HL-LHC?
- Can we bridge the gap between HL-LHC and a large future collider with enough attractive projects?
- How can we make a next collider is sustainable in terms of energy use?
- At what time-scale should the ECR community dedicate itself to one particular proposal?
- How can ECRs make the impact they desire on the decision making process?

Additional questions: please email them to: ecfa-ecr-future-colliders@cern.ch

2

[Lydia Brenner, Final remarks]

slides

Future activities of the ECFA ECR panel

Outlook

- Follow-up events at the national level, organized by local committees of the FCFA countries
- Goal: discuss country-dependent issues/aspects (e.g. funding sources, role
 of the national agencies etc.)
- · Goal: help the formation of a cohese ECR community at the national level
- Organization in progress, send an email to ecfa-ecr-future-colliders@cern.ch to participate!

ECR session organizers

Organizing committee

- · Emanuele Bagnaschi (CERN/INFN)
- · Antimo Cagnotta (U. Napoli)
- Uli Einhaus (DESY)
- Adrian Irles (IFIC CSIC/UV)
- · Dolores Garcia (CERN)

And now the panel discussion!