Electroweak Couplings of Light Quark at Future Linear Colliders

 2^{nd} ECFA Workshop on e^+e^- Higgs/EW/Top Factories

Yuichi Okugawa October 11, 2023

Université Paris Saclay

Introduction

Quark Pair Production

- $\cdot e^+e^-
 ightarrow u\bar{u}, d\bar{d}, s\bar{s}$
- $\cdot \sqrt{s} = 250 \, \text{GeV}$
- $\cdot \ \mathcal{L}_{int} = 4.2 \ ab^{-1}$

Observable

• Differential Cross section

$$\frac{d\sigma}{d\cos\theta} = S(1+\cos^2\theta) + A\cos\theta$$

• Extracted via A_{FB}

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

Energy	Process	Goal of measurements
91 GeV	$e^+e^- \rightarrow Z^0$	Z ⁰ physics and calibration
250 GeV	$e^+e^- \rightarrow Z^0 H$	Higgs couplings
	$e^+e^- \to f \overline{f}$	Z^0/γ couplings
350 GeV	$e^+e^- \to t \overline{t}$	Top mass precision
	$e^+e^- \to \nu\bar{\nu} H$	Higgs couplings
500 GeV	$e^+e^- \to t \overline{t}$	Top couplings
	$e^+e^- ightarrow t \overline{t} H$	Higgs self-coupling
	$e^+e^- \rightarrow Z^0 HH$	Higgs self-coupling
1 TeV	$e^+e^- \to \nu\bar{\nu} H H$	Higgs self-coupling

Towards Light Quarks

Quark pair production

- Extraction of A_{FB} requires dedicated PID process.
- Each flavor has unique method to identify the original hard process.
- K^{\pm} can be used as an imprint of the $s\bar{s}$ process.
- $\cdot \pi^{\pm}$ can be used for $u\bar{u}$ and $d\bar{d}$.

Leading PFO

- Multi-purpose 4π detector designed for the ILC.
- Composed of multiple sub-detectors:
 - Vertex Detector (VXD)
 - b, c-tagging
 - Time Projection Chamber (TPC)
 - \cdot dE/dx measurements
 - Electromagnetic Calorimeter (ECAL)
 - Hadronic Calorimeter (HCAL)
 - Muon Yoke
- Optimized for the application of Particle Flow Algorithm (PFA).

Figure 1: Cross sectional view of the ILD [Abramowicz et al., 2013].

PID with dE/dx Information

dE/dx Particle Identification

- TPC provides dE/dx information for each track.
- Bethe-Bloch formula separates individual particles.

Event Selection

Event Reconstruction

- Jet/vertex reconstruction
- Flavor tagging

Background Rejection

- \cdot Photon veto
 - \cdot E $_{\gamma}$ < 115 GeV
 - $\cdot |\cos \theta_{\gamma}| < 0.97$
- Acolinearity
 - $\cdot \sin \Psi_{acol} < 0.3$
- Invariant mass
 - M_{j1,j2} > 140 GeV
- Jet y₂₃
 - $y_{23} < 0.02$

Signal Definition

- \cdot Acolinearity of q ar q
 - $\cdot \sin \Psi_{acol,q} < 0.3$
- Invariant mass
 - $\cdot M_{q\bar{q}} > 140 \, \mathrm{GeV}$

Backgrounds

- Radiative return
- $\cdot e^+e^-
 ightarrow WW
 ightarrow 4f$
- $\cdot e^+e^- \rightarrow ZZ \rightarrow 4f$
- $\cdot ~e^+e^- \to q\bar{q}H$

Figure 2: Three histograms illustrating the variable (sin Ψ_{acol} , m_{j_1,j_2} , y_{23}), each successively refined by applying a cut on the right histogram. Red line shows the cut.

			Signal				Backgr	ound	
Process	dā	иū	ss	сī	ЬБ	Rad. Ret.	WW	ZZ	qqH
$e_L^- e_R^+$	59.00%	59.96%	58.08%	60.22%	59.89%	0.23%	3.98%	2.88%	1.00%
$e_{\scriptscriptstyle R}^- e_{\scriptscriptstyle L}^+$	58.88%	60.07%	57.96%	60.35%	59.76%	0.22%	1.65%	3.26%	1.02%

Table 1: Percentage of remaining events after the entire background removal with left and right-handed electron beam polarization.

- All backgrounds including radiative return can be reduced down to few percent level.
- Signal processes all remain constantly around 60 % of the entire events.

Name	Quantity	Description
Leading momentum	$p_{LPFO} > 15 \mathrm{GeV}$	Leading momentum cut
Offset	$V_0 = \sqrt{d_0^2 + z_0^2} < 1\mathrm{mm}$	Offset cut to reject $\Lambda_{\scriptscriptstyle 0}$ contribution
dE/dx PID	$dE/dx > 0.178 \times 10^{-6} \text{GeV} \text{mm}^{-1}$	π and K identification
SLPFO	Veto $p_{\scriptscriptstyle SLPFO} >$ 10 GeV and	Attenuate the charge migration by rejecting
	charge opposite to LPFO.	oppositely charge LPFO competitor
Charge	$Q_{LPFO1} imes Q_{LPFO2} < 0$	Charge of LPFOs from both sides has
		opposite charge.

Table 2: Each selection criteria for this analysis.

Detector Acceptance

Selection and Acceptance

- Due to the barrel coverage of the TPC, acceptance influences the performance of the dE/dx PID.
- Acceptance safe region of $|\cos \theta| < 0.8$ was chosen to determine the A_{FB} .

Results

Figure 3: Generated polar angle distribution for the *u* and *d* mixed samples with (a) left-handed and (b) right-handed electron beam.

Figure 4: Reconstructed polar angle distribution for the *u* and *d* mixed samples with (a) left-handed and (b) right-handed electron beam.

Differential Cross section

$$\frac{d\sigma}{d\cos\theta} = S(1+\cos^2\theta) + A\cos\theta$$

		S	σ_{S}	А	σ_{A}
o ⁻ o ⁺	Gen	1.14786e+05	3.41247e+01	-1.54663e+05	8.90167e+01
e _L e _R	Reco	1.15086e+05	2.83637e+02	-1.57997e+05	7.71496e+02
$\mathbf{e}_{R}^{-}\mathbf{e}_{L}^{+}$	Gen	3.23565e+05	5.63279e+01	-1.51642e+05	1.55409e+02
	Reco	3.24989e+05	5.11509e+02	-1.58961e+05	1.44454e+03

- *A*_{FB} parameter was extracted using the number of entries in the polar angle distribution.
- Comparing with the generated and reconstructed values, reconstruction well fits the parton level.
- Calculation of the systematic and statistical error for the A_{FB} ongoing.
- Next step is to compare with other backgrounds.

	$e^{\rm L} e^+_{\rm R}$	$e^{\rm R} e^+_{\rm L}$
Gen	-0.175747	-0.505278
Reco	-0.183423	-0.514824

Polar Angle Distribution with Backgrounds

Figure 5: Final polar angle distributions of Pions for seven different processes with (a) left-handed and (b) right-handed electron beam.

Mode	Data Events	MC prediction
K^+K^-	1290	1312.2
$K^+\Lambda^0, K^-\bar{\Lambda}^0$	219	213.5
$\Lambda^0 \overline{\Lambda}^0$	17	13.7
$K^{\pm}K^0_s$	1580	1617.3
$\Lambda^0 K^0_s, \bar{\Lambda}^0 K^0_s$	193	194.1
Total	3299	3350.8

Table 3: Summary of the selected event sample for 5 taggingmodes in data and simulation at SLAC experiment[Stängle, 1999].

• Contamination from ss process can be attenuated by requesting strict cut on the LPFO momentum.

Figure 6: Polar angle distribution for $e_L^- e_R^+$ polarization after requiring $p_{LPFO} > 40$ GeV. (Background omitted)

Summary & Outlook

Summary

- Using the Full detector simulation of the ILD, light quark pair production process was first investigated.
- The study demonstrated the possibility to extract SM parameter A_{FB} through the $e^+e^- \rightarrow q\bar{q}$ with light quarks, using polarized electron and positron beams.
- Both final fit result and A_{FB} value showed excellent consistency with the parton level.

Outlook

- Systematic and statistical error must be calculated to quantitatively tell the ILC precision.
- ss is considered background to the light quark production process. This need to be attenuated by various methods. (e.g. requiring tighter cut towards the LPFO momentum.)

Abramowicz, H. et al. (2013).

The International Linear Collider Technical Design Report - Volume 4: Detectors.

📄 Bilokin, S. (2017).

Hadronic showers in a highly granular silicon-tungsten calorimeter and production of bottom and top quarks at the ILC.

PhD thesis, Saclay.

Stängle, H. (1999).

Measurement of the $Z^0 \rightarrow s\overline{s}$ coupling at the SLD.

```
PhD thesis, Stanford U.
```

Backup

Migrations

- Migration occurs when reconstructing a particle charge opposite to its true charge in the parton level.
 - Mis-reconstruction from dE/dx PID
 - Acceptance
 - ...
- Such migration flips the reconstructed quark angle (assuming back-to-back scenario)
- pq-method
 - Uses double tag property [Bilokin, 2017].

$N_{acc} = N(p^2 + q^2)$	$p = \frac{N \pm \sqrt{N(N - 2N_{rej})}}{2}$
$N_{rej} = 2pqN$	$N \pm \sqrt{N(N-2N_{rai})}$
p + q = 1	$q = \frac{n + \sqrt{n(n - 2n_e)}}{2}$

- Preliminary result on polar angle distribution with event higher p_{LPFO} cut (60 GeV)
- Contribution from the *s*s process gets attenuated while the efficiency is significantly degraded.
- Sensitivity towards the forward region will be reduced as well.
- Other background contributions also get significantly lower.

Figure 7: Polar angle distribution for $e_L^- e_R^+$ polarization after requiring $p_{LPFO} > 60$ GeV.