

heinrichhertzstiftung

Novel b-hemisphere jet charge and flavour taggers at FCC-ee

Second ECFA Workshop on e^+e^- Higgs/EW/Top Factories – Paestum

Kevin Kröninger¹, Romain Madar², Stéphane Monteil², Fabrizio Palla³, Lars Röhrig^{1,2}

10/11/2023

¹Department of Physics – TU Dortmund University ²Laboratoire de Physique de Clermont – Université Clermont-Auvergne ³INFN Pisa

Motivation I

- **Connect energy scales** at future e^+e^- collider to access SM deviations globally
- Possible anomalies translate over a range of energy scales: from Z-pole to top threshold
- Heavy-quark EW measurements as a probe for new physics with a common set of dimension-6 operators

 \Rightarrow Vertex corrections ≈ 1 % of R_b in the SM

- **Tight constraints** on Wilson coefficients:
 - 1. Very precise measurements at the Z-pole
 - 2. Variety of observables at the top-threshold

 \Rightarrow Anomaly in e.g. the *t* forward-backward asym.

Motivation II

- Today: place focus on b-quark observables at FCC-ee with BSM potential from vertex corrections
- Measurements at the Z-pole with $4.2 \cdot 10^{12} Z \rightarrow q\bar{q}$ (4 IPs):
 - $R_b = \frac{\sigma_{b\bar{b}}}{\sigma_{had}}$ $A^b_{\rm FB} = \frac{N_{\rm F} - N_{\rm B}}{N_{\rm F} + N_{\rm D}}$

 \rightarrow Likely dominated by systematic uncertainties

Interesting terrain for new methods to improve measurement

 \rightarrow Explore Tera-Z regime with exclusive b-hadron decay reconstruction as new tagger

	Measurement	Pull	Pull
m ₇ [GeV]	91.1871 ± 0.0021	.08	1
Γ ₇ [GeV]	2.4944 ± 0.0024	56	-
$\sigma_{hadr}^{\overline{0}}$ [nb]	41.544 ± 0.037	1.75	
Re	20.768 ± 0.024	1.16	_
A ^{0,e}	0.01701 ± 0.00095	.80	-
A _e	0.1483 ± 0.0051	.21	•
A,	0.1425 ± 0.0044	-1.07	-
sin ² θ ^{lept}	0.2321 ± 0.0010	.60	-
m _w [GeV]	80.350 ± 0.056	62	
R _b	0.21642 ± 0.00073	.81	-
R _c	0.1674 ± 0.0038	-1.27	-
A ^{0,b}	0.0988 ± 0.0020	-2.20	
A ^{0,c}	0.0692 ± 0.0037	-1.23	-
A _b	0.911 ± 0.025	95	-
A _c	0.630 ± 0.026	-1.46	_
sin²θ ^{lept}	0.23099 ± 0.00026	-1.95	_
sin²θ _w	0.2255 ± 0.0021	1.13	_
m _w [GeV]	80.448 ± 0.062	1.02	-
m _t [GeV]	174.3 ± 5.1	.22	•
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02804 ± 0.00065	05	
			-3-2-10123

Exclusive *b*-hadron decays

- LEP $\sigma_{\text{syst.}}$ dominated by *udsc*-physics and hemisphere correlations
- With Tera-Z $\sigma_{\text{stat.}}$ in reach: measurement limited by systematic uncertainties
- Reconstruct exclusive *b*-hadron: determine quark-flavour with 100 % purity \rightarrow Stick to **ultra-pure mass region** to assess remaining systematic uncertainties $\rightarrow \varepsilon_b = 1 \%$

• C_b and QCD corrections evaluated on **Full Simulation sample** and forced decays $(B^{\pm} \rightarrow [K^+\pi^-]_{\bar{D}^0} \pi^+)$

Evt. selection

udsc

MC stat

Tracking

Thrust \vec{T}

Performance I

■ Include > 200 *b*-hadron decay modes

- \rightarrow Evaluate tagger performance from **six representative decay modes** (varying track mult., N_{π^0}, \ldots)
- Purity & reconstruction efficiency evaluated on $10^7 \ Z \rightarrow q\bar{q}$ Fast Simulation events with IDEA detector
- Here: $B^+ \rightarrow [K^+\pi^-]_{\bar{D}^0} \pi^+$ with $E_B > 20 \text{ GeV}$ to reduce background

- Purity: 99.8%, reconstruction efficiency: 77%
- Background suppressed by three orders of magnitude, contamination in signal region from $g
 ightarrow b ar{b}$

Performance II

- Evaluate actual tagger efficiency (Br $\cdot \epsilon_{reco}$) for the six modes when increasing the acceptance range
- $\rightarrow~$ Enlarging mass window highly increases the tagger-efficiency by keeping purity constant

Focus on mass peak region to control systematic uncertainties

Measurement of R_b : Importance of hemisphere correlation

- State of the art (ALEPH): $R_b = 0.2159 \pm 0.0009$
- With conservative tagger efficiency of 1 %: $\sigma_{\text{stat.}}(R_b) = 2.2 \cdot 10^{-5}$ (factor 45 w.r.t. ALEPH)
- ${\scriptstyle \blacksquare}~\sigma_{\rm syst.}$ reduces to hemisphere efficiency correlation

 \rightarrow Quantifies dependence of tagging efficiencies in the two hemispheres:

$$C_b = rac{\varepsilon_{b\bar{b}}}{\varepsilon_b \cdot \varepsilon_{\bar{b}}}$$

Its precise knowledge is **the key** for the measurement of *R*_b

Green Uncertainty on C_b scaled Gray C_b values extrapolated

• Two handles: Uncertainty on C_b and difference to $C_b = 1$

Understanding C_b : The PV resolution

- **Goal:** Find regions of the phase-space which increase C_b (kinematically + event-variables) \rightarrow LEP found: mainly driven by **PV measurement uncertainty**
 - $\rightarrow \text{LEP}$ did: PV-separation. Here: cut on luminous region from beam spot constraints

Cut on the luminous region:

Understanding C_b : The PV resolution

- **Goal:** Find regions of the phase-space which increase C_b (kinematically + event-variables) \rightarrow LEP found: mainly driven by **PV measurement uncertainty** \rightarrow LEP did: PV-separation. Here: cut on **luminous region** from beam spot constraints
- Focus placed on **differential analysis** of C_b to reduce systematic uncertainties
- All distributions normalised to inclusive C_b value

Cut on the luminous region:

$$ightarrow \sigma_{\mathsf{PV}} = \sqrt{\sum_{i \in [x, y, z]} \left(\mathsf{PV}_i^{\mathsf{Object-level}} - \mathsf{PV}_i^{\mathsf{Particle-level}}\right)}$$

- \rightarrow **Strongly dependend** for the shared PV approach
- $\rightarrow~\textbf{Resolved}$ with optimised cut on luminous region

> Bmin

Understanding C_b : The flight-distance asymmetry

- Linked to the PV resolution: flight-distance asymmetry $A_{FD} = \frac{FD_{Bmax} FD_{Bmin}}{FD_{Bmax} + FD_{Bmin}}$
- One *B*-meson far away \rightarrow **Reduce PV measurement precision** (captures more tracks) \rightarrow Increase C_b

Large asymmetries: correlation decreases

Flat distribution for luminous region

<u>*R_b* conclusions:</u>

- 1. Crucial to minimise the remaining systematic uncertainty on R_b
- 2. Handle to reduce C_b differentially: luminous region approach minimises PV dependencies
- 3. Larger FullSim sample in order to make quantitative statements

Measurement of A_{FB}^b

- Forward/backward determined from thrust-axis $\vec{\mathcal{T}}$, charge from reconstructed *B*-candidate
- Remove mixing dilution by using B^+ and Λ_b^0 decays
- Hard gluon radiation can still confuse hemispheres, **but:** direction of B^+ is known

 \rightarrow *B*-meson direction estimator altered through gluon emission + fragmentation

 $\rightarrow\,$ Use this information to minimise QCD corrections

Controlling the gluon radiations?

• Control g-radiation through $\angle(B^{\pm}, \vec{T})$

 \rightarrow Hard gluon emission increases opening angle between $\vec{\mathcal{T}}$ and $\mathcal{B}\text{-meson}$

Evaluate A^b_{FB} by cutting events with large opening angles

 \rightarrow Removing events with large $\angle (B^{\pm}, \vec{T})$: closer to parton-level A^{b}_{FB}

Conclusions and Outlook

- Novel *b*-hemisphere charge and flavour taggers for application at Tera-*Z* programme
- Promising performance: purity above 99.6 % for representative modes
- *R_b* and *A^b_{FB}*: overcome syst. limitations from *udsc*-quark physics by reconstructing exclusively *b*-hadrons
- *R_b* 1. Overcome syst. limitations from *udsc*-quark physics
 - 2. Reduction of C_b through cut on the luminous region
- A_{FB}^{b} 1. Overcome syst. limitations from *udsc*-quark physics
 - 2. Remove mixing dilutions by considering B^+ and Λ_b^0
 - 3. Gluon radiation control with angle between *B*-meson and \vec{T} ?

Conclusions and Outlook

- Novel *b*-hemisphere charge and flavour taggers for application at Tera-*Z* programme
- Promising performance: purity above 99.6 % for representative modes
- *R_b* and *A^b_{FB}*: overcome syst. limitations from *udsc*-quark physics by reconstructing exclusively *b*-hadrons
- *R_b* 1. Overcome syst. limitations from *udsc*-quark physics
 - 2. Reduction of C_b through cut on the luminous region
- A_{FB}^{b} 1. Overcome syst. limitations from *udsc*-quark physics
 - 2. Remove mixing dilutions by considering B^+ and Λ_b^0
 - 3. Gluon radiation control with angle between *B*-meson and \vec{T} ?

Luminous region

•
$$\bar{d}_0 = \operatorname{sign}(\operatorname{PV}_z^{\operatorname{Particle-level}}) \cdot \sqrt{\left(\operatorname{PV}_x^{\operatorname{Particle-level}}\right)^2 + \left(\operatorname{PV}_y^{\operatorname{Particle-level}}\right)^2}$$

•
$$v_1 = \frac{d_0 - \mu(\vec{d}_0)}{\sqrt{\sigma(d_0)^2 + \sigma(\vec{d}_0)^2}}$$
 and $v_2 = \frac{z_0 - \mu(\vec{d}_0)}{\sqrt{\sigma(z_0)^2 + \sigma(\vec{d}_0)^2}}$, d_0 and z_0 are the track parameters

Luminous region: primary and secondary

- $\scriptstyle \bullet$ Is there a possibility to distinguish between primary and secondary tracks? $\rightarrow Yes!$
- Use truth-matched tracks to compute v_1 and v_2 distributions

Optimising the luminous region cuts

- Scan over a range of v_1 and v_2 independently
- Evaluate product of purity and efficiency of the D⁰- and B-mesons & mean number of secondary tracks
- $P_{v_1v_2} = \frac{N_{sig}}{N_{sig} + N_{bkg}}$, N_{bkg} estimated and scaled from the sidebands
- $\varepsilon_{v_1v_2} = \frac{N_{\rm sig}}{N_{\rm total}}$, $N_{\rm total} = (10^4 \cdot N_B)$ and $N_B = 2$

 \rightarrow Choose maximum for v_1 from $P_{v_1v_2} \cdot \varepsilon_{v_1v_2}$, v_2 taken from the mean number of tracks

Differential hemisphere correlations: B-momentum

Differential hemisphere correlations: B-flight distance

Differential hemisphere correlations: B-polar angle

Differential hemisphere correlations: B-momentum asymmetry

• $A_{p_B} = \frac{p_{B_{\max}} - p_{B_{\min}}}{p_{B_{\max}} + p_{B_{\min}}}$

Fast Simulation: Decay mode $B^+ \rightarrow [K^+\pi^-]_{\bar{D}^0}\pi^+$

Fast Simulation: Decay mode $B^+ \rightarrow [K^+\pi^-\pi^0]_{\bar{D}^0}\pi^+$

Fast Simulation: Decay mode $B^+ \rightarrow [K^+\pi^- 2\pi^0]_{\bar{D}^0}\pi^+$

Fast Simulation: Decay mode $B^+ \rightarrow [K^+ 2\pi^- \pi^+]_{\bar{D}^0} \pi^+$

Fast Simulation: Decay mode $B^+ \rightarrow [\ell^+ \ell^-]_{J/\psi} K^+$

Fast Simulation: Decay mode $B^+ \rightarrow [K^+ K^- \pi^+]_{D^+_s} [K^+ \pi^-]_{\bar{D}^0}$

