Optimizing the Higgs self-coupling measurement at ILC and C³

Second ECFA Workshop on e+e- Higgs/EW/Top Factories | 2023/10/12 | Paestum

<u>Bryan Bliewert^{1,2}</u>, Jenny List¹, Julie Munch Torndal^{1,3}, Dimitris Ntounis⁴, Caterina Vernieri⁴, Junping Tian⁵

- ¹ DESY Hamburg
- ² Technische Universität München
- ³ Universität Hamburg
- ⁴ SLAC
- ⁵ University of Tokio

> Higgs-sector in SM after SSB: only one free parameter

Higgs self-coupling λ in the Standard Model (SM)

4

$$V(h) = \frac{1}{2}m_{H}^{2}h^{2} + \lambda_{3}\nu h^{3} + \frac{1}{4}\lambda_{4}h$$
$$\frac{m_{H}^{2}}{2\nu^{2}} = \lambda_{3}^{SM} = \lambda_{4}^{SM}$$

> self-coupling λ defines shape of Higgs potential

$$\lambda + \delta \lambda = \frac{m_H^2}{2\nu^2} \pm \frac{\delta m_H}{\nu^2} m_H \approx 0.13 \pm 10^{-3}$$

> sensitive to BSM physics by loop corrections

Optimizing the Higgs self-coupling measurement at ILC and C³ | Bryan Bliewert | 2nd ECFA WS on e+e- H/EW/T-F | 2023/10/12

Measuring the Higgs self-coupling at e+e- colliders

- *direct access* to λ possible through
 double-Higgs production
 - Di-Higgs strahlung (dominant < 1 TeV)
 - vector boson fusion (dominant > 1 TeV)

 e^{-}

 e^+

3

Overview of future e^+e^- **colliders**

> different center-of-mass (COM) energies \sqrt{s} /GeV for physics programs

	Z	WW	ZH	tī	ZHH	ννΗΗ
ILC	—	—	250	350	500	1000
C ³	—	—	250	—	550	_
CLIC	—	—	380	380	—	3000
FCC-ee	91	160	240	365	—	—
CEPC	91	160	240	360	_	_

- ILC/C³ designed to operate at peak of di-Higgs production by Higgs strahlung
 - direct measurement of λ

The ZHH analysis

- > extensive projections at ILC with proposed $\sqrt{s} = 500 \text{ GeV} (\text{DESY-Thesis-2016-027})$
- based on ILD detector concept (DBD2013, IDR2020)

> precision reach after running $4ab^{-1}$ at 500 GeV (HH $\rightarrow b\overline{b}b\overline{b} + HH \rightarrow b\overline{b}W^{\pm}W^{\mp}$)

 $\Delta \sigma_{ZHH} / \sigma_{ZHH} = 16.8\%$ $\Delta \lambda_{SM} / \lambda_{SM} = 26.6\%$ $\Delta \lambda_{SM} / \lambda_{SM} = 10\%$ with additional upgrade to 1 TeV

- better than 20% sensitivity expected with state-of-the-art reconstruction tools
- > open questions:
 - How do better reconstruction tools improve the sensitivity to the Higgs self-coupling?
 - What's the quantitative effect of increasing the COM-energy?

> higher \sqrt{s} > higher ZHH cross section **but** increasing uncertainty on self-coupling

Advantages of higher COM energies

- more boosted jets
 - better clustering, better jet-pairing?
 - improved b-tagging efficiencies?
 - better separation between signal and background?

Disadvantages of higher COM energies

> sensitivity factor c on self-coupling λ increases with E_{CM}

$$\frac{\Delta\lambda}{\lambda} = c \cdot \frac{\Delta\sigma}{\sigma}$$

- less sensitivity to λ ?

Jet clustering

ILD work in progress

100

Dijets / 2 GeV 1 5°1

0.5

50

> quantify with misclustering categories:

500 GeV

regionA

regionB

regionC

regionD

no 150 200 reco M_{dijet} / GeV

overlap fraction between true and reco energy _

Ge/

 \sim

Dijets

2

.5

0.5

Increasing energy

work in progress

100

600

53.7

> WIP: investigating Graph-Neural-Networks (GNN) as promising alternative to Durham alg.

50

Flavor tagging

- > improved b-tagging efficiency since state-of-the-art projections from 2016
 - 5% relative improvement in ϵ_{b-tag}
 - 11% expected improvement in $\Delta \sigma_{ZHH} / \sigma_{ZHH}$
- b-hadron decay length increases with COM energy

Kinematic fitting

Solution

Constraint contours

x2 contours

- > exploit known initial state in e^+e^- colliders for
 - improving kinematics
 - hypothesis testing
 - jet-pairing
- based on method of Lagrange multipliers
- > additionally: ErrorFlow
 - parametrizes sources of uncertainties for individual jets [Yasser Radkhorrami, 2023]

 $\sigma_{E_{jet}} = \sigma_{Det} \oplus \sigma_{Conf} \oplus \sigma_{\nu} \oplus \sigma_{Clus} \oplus \sigma_{Had} \oplus \sigma_{\gamma\gamma}$

- σ_{Det} detector resolution
- σ_{Conf} particle confusion in Particle Flow algorithm
- σ_{ν} neutrino correction

See also: <u>Talk by Leonhard Reichenbach</u> <u>Poster by Jenny List</u>

Starting point

Jet pairing from kinematic fits

- > assuming signal hypothesis: sharper dijet mass distributions for higher energies
- > applying background hypothesis, more ZHH events remain at m_H for higher energies

– however, also for ZZH events

Hypothesis testing with kinematic fitting

Hypothesis testing with kinematic fitting

> pre-fitted dijet-masses: large overlap between signal (ZHH) and background (ZZH) with ErrorFlow: different separation of signal/background (WIP)

The Matrix Element Method (MEM)

- method for calculating event-likelihoods; use cases:
 - hypothesis testing (Neyman-Pearsson lemma)
 - parameter estimation
- > example here: separate signal vs main irreducible background ZHH vs. ZZH $\rightarrow \mu^{-}\mu^{+}b\overline{b}b\overline{b}$
- \succ for each event y and process *i* (ZHH, ZZH), solve

$$P_i(\mathbf{y} \mid \mathbf{a}) = \frac{1}{\sigma_i(\mathbf{a}) \cdot A_i(\mathbf{a})} \int |M_i(\mathbf{x}, \mathbf{a})|^2 W_i(\mathbf{y} \mid \mathbf{x}) \epsilon_i(\mathbf{x}) d\Phi_n(\mathbf{x})$$

- $M_i(x, a)$ LO matrix element (**ME**): HELAS-based Physsim (J. Tian)
- $W_i(y|x)$ detector transfer functions (**DTFs**): probability density for measuring y given x; fitted from ILD full-simulation

> discriminator:
$$D_{bkg}(\mathbf{y}) = \left(1 + \frac{P_{ZZH}(\mathbf{y})}{P_{ZHH}(\mathbf{y})}\right)$$

a : theory parameters; e.g. λ_{HHH} $A_i(a)$: signal acceptance $\epsilon_i(x)$: detector efficiency

Hypothesis testing with the MEM

MC truth + Matrix Elements (ME) only

- > use case: generator-level check
 - calculate discriminator just from $M_i(y_{truth})$ and σ_i
 - no transfer function
- perfect separation, as expected

Optimizing the Higgs self-coupling measurement at ILC and C³ | Bryan Bliewert | 2nd ECFA WS on e+e- H/EW/T-F | 2023/10/12

0.4

Dbka

0.6

Hypothesis testing with the MEM: Result

Reconstructed data + Full-MEM

ME only with reco data

- gained separation power by including detector effects
- > possibly: MEM output as input to other MVA
- > computationally demanding \rightarrow WIP: investigate approach with invertible neural networks (INNs)

0.0

0.2

0.8

1.0

Hypothesis testing with the MEM: Result Reconstructed data + Full-MEM

- gained separation power by including detector effects
- > possibly: MEM output as input to other MVA

ROC (Reco @ Full - MEM) AUC = 0.758

> computationally demanding \rightarrow WIP: investigate approach with invertible neural networks (INNs)

Choice of COM energy

Advantages of higher COM energies

- > more boosted jets
 - better clustering, better jet-pairing?
 - improved b-tagging efficiencies?
 - better separation between signal and background?

Disadvantages of higher COM energies

> sensitivity factor c on self-coupling λ increases with E_{CM}

$$\frac{\Delta\lambda}{\lambda} = c \cdot \frac{\Delta\sigma}{\sigma}$$

- less sensitivity to λ ?

- so far: small effects in all expected places that could improve event reconstruction
- \rightarrow need to also consider reduced dependence of λ on the cross-section

Precision on Higgs self-coupling at future colliders

Conclusion

> discovery potential of Higgs self-coupling at ILC clearly demonstrated in the past

- sensitivity improvement to better than 20% at ILC500 expected due to improvements in reconstruction tools
 - update to state-of-the-art projections for ILC underway at 500, 550 and 600 GeV COM energies
- > by combining ZHH and vvHH measurements at **ILC500+ILC1000**
 - **10% precision on \lambda** for $\lambda_{true} = \lambda_{SM}$
 - at least 30% precision on any value of λ
- improving signal/background discrimination using MEM
 - investigate ML-based approaches, especially conditional INNs

Thank you!

Backup

MEM detector transfer functions

- PDF for energies/angles
 between reconstructed
 and parton-level particles
- "conventional approach": fitting transfer functions explicitly
- separate transfer
 functions possible for
 signal/background
 hypothesis

$$P_i(\mathbf{y} \mid \mathbf{a}) = \frac{1}{\sigma_i(\mathbf{a}) \cdot A_i(\mathbf{a})} \int W_i(\mathbf{y} \mid \mathbf{x}, \mathbf{a}) |M_i(\mathbf{x}, \mathbf{a})|^2 T_i(\mathbf{x}, \mathbf{a}) d\Phi_n$$

$$d\boldsymbol{\Phi}_n = \prod_{i}^{\mu^-,\mu^+,b_1,\overline{b_1},b_2,\overline{b_2}} \frac{d^3\boldsymbol{p}_i}{(2\pi)^3 2E_i}$$

> leptons well measured \rightarrow no integration for μ^-, μ^+

- conservation of four momentum and narrow-widthapproximation
 reduction of integration to 7 dimensions
- > integration variables: Θ_{b1} , ϕ_{b1} , ρ_{b1} , θ_{b1b} , ϕ_{b1b} , ρ_{b2} , Θ_{b2}
- with VEGAS+ and integrand in C++, computation time
 1-3 minutes per process (including setup of integration grid)
- "accept-and-reject" MC

itn	integral	wgt average	chi2/dof	Q		
1	4.2(3.6)e-09	4.2(3.6)e-09	0.00	1.00		
2	6.7(2.7)e-10	6.9(2.7)e-10	0.94	0.33		
3	6.0(2.1)e-10	6.4(1.7)e-10	0.50	0.60		
4	2.69(55)e-10	3.05(52)e-10	1.81	0.14		
5	3.49(58)e-10	3.24(39)e-10	1.44	0.22		
6	2.96(43)e-10	3.12(29)e-10	1.20	0.31		
7	5.0(1.2)e-10	3.23(28)e-10	1.42	0.20		
8	4.78(94)e-10	3.35(27)e-10	1.58	0.14		
9	8.6(2.2)e-10	3.43(27)e-10	2.11	0.03		
10	5.9(1.8)e-10	3.48(26)e-10	2.07	0.03		
result = 3.48(26)e-10						

itn	integral	wgt average	chi2/dof	Q		
1	1.58(18)e-09	1.58(18)e-09	0.00	1.00		
2	1.68(19)e-09	1.63(13)e-09	0.13	0.72		
3	1.94(19)e-09	1.72(11)e-09	0.96	0.38		
4	1.91(13)e-09	1.800(82)e-09	1.04	0.37		
5	1.98(27)e-09	1.815(79)e-09	0.88	0.48		
6	2.73(99)e-09	1.821(78)e-09	0.88	0.50		
7	1.78(10)e-09	1.807(62)e-09	0.74	0.61		
8	2.03(17)e-09	1.834(59)e-09	0.86	0.54		
9	1.72(13)e-09	1.816(54)e-09	0.82	0.58		
10	1.813(83)e-09	1.815(45)e-09	0.73	0.68		
result = $1.815(45)e-09$ Q = 0.68						

MEM results for example ZHH (top) and ZZH (bottom) event

MEM with+without transfer functions

> distributions before (left) and after (right) including transfer functions

