Precision Absolute Luminosity with Photon Pairs

Graham W. Wilson

University of Kansas

October 11, 2023
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LUMI: Targets for Absolute Luminosity Precision

@ The standard process used for absolute
luminosity at LEP is small-angle Bhabha
£°¢” Py Proctes a G, - (Ca% 120 scattering, eTe™ — ete™ (high statistics).

@ This will be important for relative luminosity
and could still lead in absolute precision.

@ The pure QED process, ete™ — v, is now
also considered very seriously for absolute
luminosity, for both experimental and
theoretical reasons.

@ It emphasizes reconstruction (rejection) of
high energy photons (electrons) over most of
the detector’s solid angle.

Ideally match/exceed stat. precision of the accelerator. Denominator

normalizing processes should have cross-sections exceeding the numerator.

Example 1 (ILC): WW at 250 GeV. With 0.9 ab™* (LR) — 1.7 x 10~*.

e Example 2 (102 Z with FCC) — 1.0 x 107°.
What is realistically achievable in terms of systematics is another matter. For now
the assumption is to target 1074
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LUMI: efe™ — ~+ for absolute luminosity

Targeting 10~* precision. Cross-sections (and ratios) at /s = 161 GeV.
Omin (°) | oyy (Pb) | Ac/o (10 madg o(ee)/a(~yy)

45 53 2.0 x 10~ 6.1
20 12.7 2.2x1075 22
15 15.5 2.4 x 1075 35
10 19.5 29x107° 68
6 24.6 3.9x107° 155
2 35.7 8.1 x107° 974

@ Unpolarized Born cross-sections. +24% for (80%/30%) longitudinal beam
polarization. Typical HO effects: + 5 to 10%.
Counting statistics adequate for /s > my. Note: Use whole detector.

@ For comparison, 10urad knowledge for OPAL small-angle Bhabha lumi
acceptance, corresponds to uncertainty of 100 x 1075,
v has “relaxed” fiducial acceptance tolerances compared to Bhabhas.

@ Bhabha rejection (e/+ discrimination) important. Can be aided by much
better azimuthal measurements given electron bending in the B-field.
FoM: B zcar. ILD has 7.7 Tm. FCC about 2.2 Tm. OPAL was 1.04 Tm.
Adequate rejection feasible within tracker acceptance? / challenging below.
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Why is ete™ — ~~ attractive?

Focus here on experimental things. The hope and expectation is that theory will
be able to keep up.

@ Bhabha process looks problematic for precision absolute luminosity. It was
even not under control experimentally at LEP1 due to the beam-beam effect
bias on the luminosity acceptance at the 0.1% level (see 1908.01704).

Di-photon process should be less affected.
Di-photons much less sensitive to polar angle metrology than Bhabhas.
Di-photons less sensitive to FSR than Bhabhas.

Likely more feasible now with modern calorimeters to do a particle-by-particle
reconstruction. Likely easier with di-photons.

o Current detector designs are arguably over-designed for Bhabhas with some
compromises for overall performance especially for high energy photons in
azimuthal and energy reconstruction, and perhaps for hermeticity.

@ Di-photons at very low angle is challenging! - but gives significant added
value to the assumed clean measurements in the tracker acceptance.
So let's design precision forward calorimetry for electrons AND photons inspired

by various ideas (and avoiding some of the compromises) of related designs,
CALICE, ILD, SiD, CMS-HGCAL, ALICE-FoCal, Fermi-LAT.
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PLUG-Cal: Precision Luminosity Ultra-Granular Calo.

© Precise location of the high-energy photon interaction point (via conversion
to eTe™) in thin absorbers (see Fermi-LAT for extreme version of this).

@ 250 GeV photons need longitudinal containment to avoid large constant
term. (10, 1)% of photons survive for (3, 6) Xo prior to interaction.

© Above items — Many thin layers assuming a sampling Si-W ECAL.
©Q Calibration — More straightforward with uniform sampling.

@ Potential for adoption in part of pixel-based devices. FoCal prototype
achieved 30 micron resolution for high energy electron showers with ALPIDE
sensors (1708.05164). 2 planes adopted for ALICE-FoCal upgrade.

Include Oth-layer and maybe more for enhanced e/~ discrimination.

Emphasize azimuthal measurements for e"e~ / 4~y discrimination. Expect
about 110 mrad acoplanarity for Bz;car = 8.4 Tm.

o

o

@ Particle-by-particle reconstruction capabilities.

© Limited solid-angle — cost is not an over-arching concern.

Graham W. Wilson (University of Kansas) ECFA Paestum Workshop October 11, 2023 5/18



PLUG-Cal: Initial GEANT4 Design Studies

@ In collaboration with Brendon Madison. We have been exploring some
aspects of the design using various GEANT4 (4-11-01-patch-02 [MT])
examples (TestEm3, HGCAL _testbeam, gammaray_telescope)

@ Basic EM energy performance studies using TestEm3. Range cut 1
micron. XY extent 50 cm. Adds up globally the energies deposited in each
type of material. Apply to Si-W calorimeter with various absorber and sensor
thicknesses. Main results are for 35 Xj depth of W absorber with 140
samples with same Si sensor thickness as ILD.

@ Also recently (Saturday...) started with HGCAL _testbeam example - looking
at position resolution observables. This has hexagonal pads with similar
transverse dimensions to standard ILD and SiD.
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Measuring Energy Linearity and Resolution

Typical calorimeter analyses fit Gaussian distributions to truncated regions of
plots. Here instead a Gamma distribution is used to also model the skewness. The
two parameters can be configured to be the mean, i, and the fractional resolution,
(o' /). The mean and fractional resolution are annotated as (Ep, o) in the plots.

Geant4 Si-W ECAL Study
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Energy Linearity and Resolution: 1 GeV, 3 GeV Photons

Geant4 Si-W ECAL Study Geant4 Si-W ECAL Study
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Energy Linearity and Resolution

Geant4 Si-W ECAL Study Geant4 Si-W ECAL Study
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Energy Linearity and Resolutio

. 300 GeV Photons

Geant4 Si-W ECAL Study
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Energy Linearity and Resolution

Calorimeter Photon Linearity Calorimeter Photon Energy Resolution
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Excellent linearity in [1, 300] GeV range. Fits well with only a stochastic term and
Generally within 0.1%, suspect albedo for no constant term. Energy resolution of
< 2 GeV. EM sampling fraction of 7.7%. 0.460 + 0.006% at 300 GeV.
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Position Resolution Tests

How much can the photon and electron position resolution be pushed with small
cells? Can one localize the initial photon interaction point? thus measuring the ~
scattering angle, § = tan~1(r/z), and aiding in separating electrons and photons.

o Use GEANT4 example HGCal_testbeam (CMS). The software was well
adapted to the task - but is NOT the proposed design concept.

@ Uses hexagonal Si pads with 28 layers totalling 27 X,. Absorbers included
Pb, Cu, CuW (quite a mix...).

@ In a first step changed hexagonal pixel areas from 1.09 cm? to 0.301 cm?.
@ So far, longitudinal structure unchanged - except beam starts inside Al box.

Beam particles are incident on the array with a Gaussian profile with spread in x
and y of 1.5 cm. Residuals for calorimeter position observables are calculated with
respect to the randomized true beam position event-by-event.

hexagon x horizontal hexagon y vertical
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Choosing the best hit in the first hit layer

1 GeV photon 100 GeV photon
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Shower center-of-gravity (all layers)

Events per 0.25 cm bin

Events per 0.25 cm bin
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800r : Entries 10000
A Shower mean (weights=1) Mean 0.00703412
——— Hegaxon-x StdDev 0329834
n Hexagon-y Underflow 22
00— Overflow 25
= HGCAL-like, A, =0.30 cn? Entries 10000
C Mean  -0.00165077
500~ Std Dev 0318872
E Underflow 3t
a00F- Overflow 17
300 =
200

-08 -06 -04 -02 0 02 0.4 0.6 0.8 1
Position Residual [cm]

1 GeV photon

2000 : Entries 10000

1800 Shower mean (energy weights) Mean 0.00449959

Hegaxon-x Std Dev 0.33369

Hexagon-y Underflow 57

1600 Overflow 7

HGCAL-like, A,, = 0.30 cn? Entries 10000

1400 " Mean 0.00432224

Std Dev 0.326728

1200 Underflow 60

1000 Overflow 47
800
600
400

.4 0.6 0. 1
Position Residual [cm]

ECFA Paestum Worksh

Events per 0.25 cm bin
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First Hit Layer CoG

1 GeV photon
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CoG from layers within 5 Xj of 1st hit layer

1 GeV photon 100 GeV photon
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Position Resolution Conclusions

@ Good sensitivity at the single cell level for low energy photons.

@ More ambiguities for higher energy photons, but much more information from
whole shower.

@ Much higher granularity can benefit a lot. See eg. FoCal prototype.
Dimensions (in microns) of 50*50, 30*30, 25*%100, 12.5*50 are all
possibilities for pure digital approach.

@ Need to also make sure that layer-to-layer alignment is randomized enough.
@ Need to do some clustering too.

@ Hexagons are different!
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Conclusions

o | believe the PLUG-Cal concept has potential for superior performance for
luminosity measurements even with eTe™ — v below the tracker
acceptance. Potential doubling of acceptance.

@ It can likely make radial measurements better than ILD LumiCal but with
longer Moliere radius and better energy and azimuthal resolutions and
hermeticity.

@ Plan to benchmark against current ILD design for electrons and photons.

@ What fraction if any of digital-only planes - not clear. Could also consider
analog + digital planes if digital thin enough. I'm wary of compromising the
analog performance.
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