

Reconstructing long-lived particles with the ILD detector

SECOND • ECFA • WORKSHOP
on e⁺e⁻ Higgs / Electroweak / Top Factories

11-13 October 2023
Paestum / Salerno / Italy

Jan Klamka, A.F. Żarnecki University of Warsaw

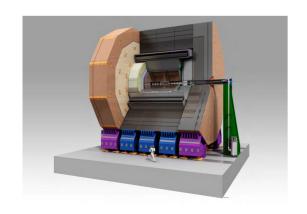
jan.klamka@fuw.edu.pl

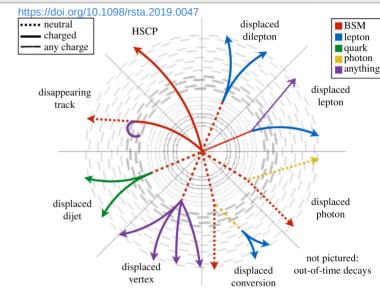
Long-lived particles

Numerous BSM models predict LLPs:

 \rightarrow SUSY particles, axion-like particles, heavy neutral leptons, dark photons, exotic scalars...

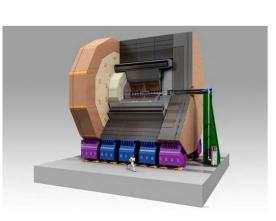
GMSB AMSB Split-SUSY RPV Twin Higgs Quirky Little Higgs Folded SUSY Freeze-in Asymmetric			Small coupling	Small phase space	Scale suppression
RPV Twin Higgs Quirky Little Higgs Folded SUSY Freeze-in	SUSY	GMSB			√
RPV Twin Higgs Quirky Little Higgs Folded SUSY Freeze-in		AMSB		✓	
RPV Twin Higgs Quirky Little Higgs Folded SUSY Freeze-in		Split-SUSY			✓
Z Quirky Little Higgs Folded SUSY Freeze-in ✓		RPV	✓		
Folded SUSY Freeze-in	NN	Twin Higgs	✓		
Folded SUSY Freeze-in		Quirky Little Higgs	✓		
Freeze-in Asymmetric		Folded SUSY		✓	
Asymmetric	$\overline{\mathrm{DM}}$	Freeze-in	✓		
		Asymmetric			✓
Co-annihilation ✓		Co-annihilation		✓	
∑ Singlet Scalars ✓	Portals	Singlet Scalars	✓		
्र ALPs		ALPs			✓
Ö Dark Photons		Dark Photons	✓		
Heavy Neutrinos		Heavy Neutrinos			✓


1810.12602



LLPs at the Higgs factories

- Multiple LLP searches at the LHC, sensitive to high masses and couplings
 - → complementary region could be probed at e⁺e⁻ colliders (small masses, couplings, mass splittings)
 - → typical properties of feebly interacting massive particles (FIMPs)
- ILD potentially promising with a <u>TPC</u> as the main tracker (almost continous tracking)

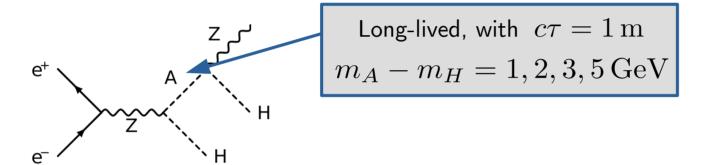




LLPs at the Higgs factories

- Multiple LLP searches at the LHC, sensitive to high masses and couplings
 - → complementary region could be probed at e⁺e⁻ colliders (small masses, couplings, mass splittings)
 - → typical properties of feebly interacting massive particles (FIMPs)
- ILD potentially promising with a <u>TPC</u> as the main tracker (almost continous tracking)

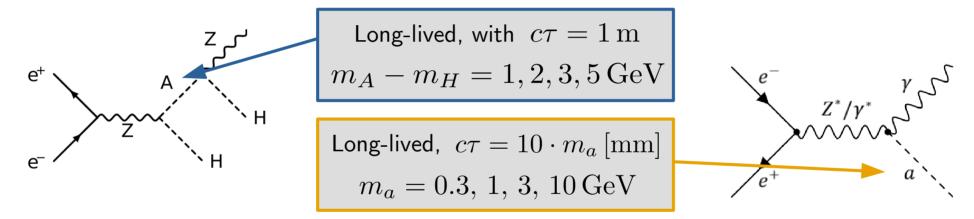
- Study such challenging signatures from the experimental perspective
 - → experimental/kinematic properties, not points in a model parameter space
- Focus on a generic case two tracks from a displaced vertex
- No other assumptions about the final state, approach as general as possible



Framework and signatures

As a challenging case (small boost, low-pT final state) we considered:

 \rightarrow (tuned) Inert Doublet Model sample with small mass splitting, $Z^* \rightarrow \mu\mu$



Framework and signatures

As a challenging case (small boost, low-pT final state) we considered:

ightarrow (tuned) Inert Doublet Model sample with small mass splitting, ${
m Z}^*
ightarrow \mu \mu$

The opposite extreme case, (large boost, high-pT final state) \rightarrow (tuned) axion-like particle model sample, $a \rightarrow \mu\mu$

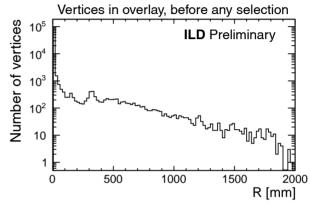
Very simple vertex finding, based on a distance between track pairs

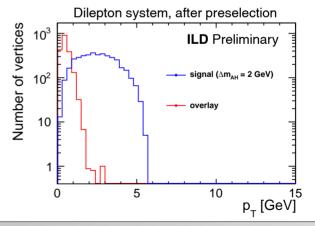
Overlay events

At the ILC, on average 1.05 low-pT hadrons and 1 seeable e⁺e⁻ pair events are produced in each bunch-crossing

In most analyses important as they **overlay** on physical events

→ but can look like signal on their own

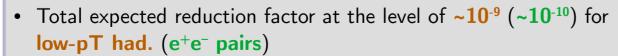

Overlay events

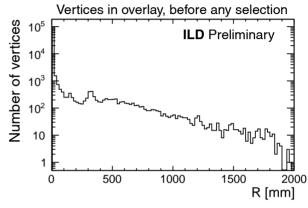


At the ILC, on average 1.05 low-pT hadrons and 1 seeable e⁺e⁻ pair events are produced in each bunch-crossing

In most analyses important as they **overlay** on physical events

- → but can look like signal on their own
- ~10¹¹ bunch-crossings per year at ILC
- Overlay events can be busy
 - \rightarrow can also contribute to fake secondary vertices
- kinematics similar to signal
 - → expected to give dominant contribution as a separate background

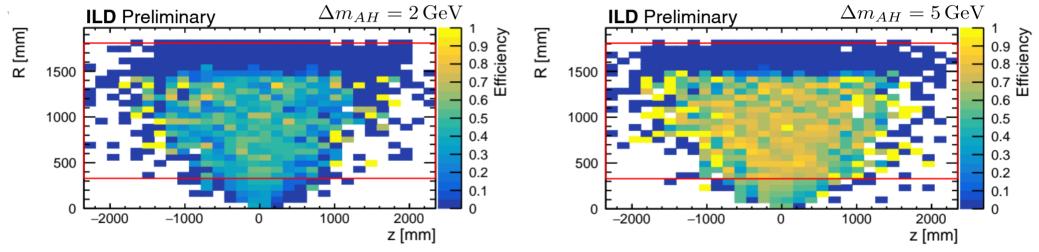

Overlay events



At the ILC, on average 1.05 low-pT hadrons and 1 seeable e⁺e⁻ pair events are produced in each bunch-crossing

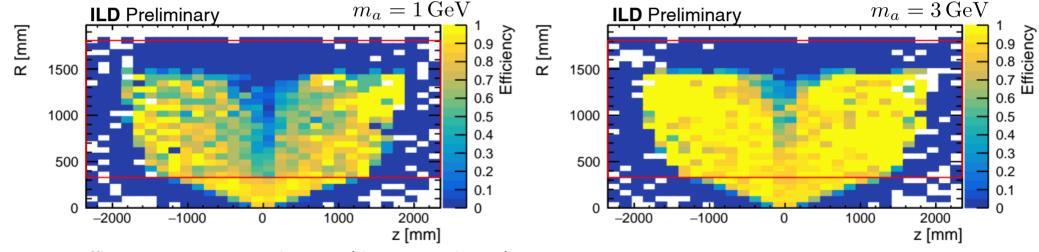
In most analyses important as they overlay on physical events

- → but can look like signal on their own
- ~10¹¹ bunch-crossings per year at ILC
- Overlay events can be busy
 - \rightarrow can also contribute to fake secondary vertices
- kinematics similar to signal
 - → expected to give dominant contribution as a <u>separate background</u>
 - Can be suppressed using cuts on the p_T and geometry of track pair



Results (heavy scalar signal)

$\Delta \mathrm{m}$	1 GeV	2 GeV	3 GeV	5 GeV
TPC eff. (correct / decays within TPC acceptance)	3.9%	37%	52.2%	60.4%
Accuracy in TPC (correct / all found)	99.1%	99.5%	99.5%	99.7%


- Consider "correct" if distance to the true vtx < 30 mm
- **Signal selection** depends strongly on the **mass splitting** (Z* virtuality)
- $\Delta m = 1$ GeV scenario needs dedicated approach

Results (ALP signal)

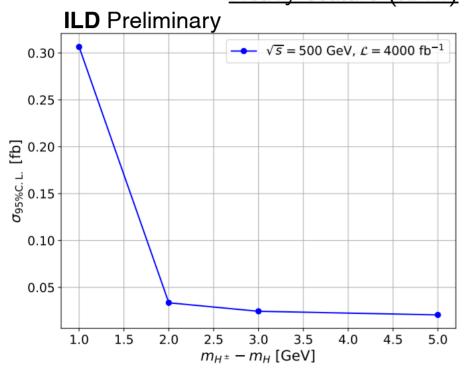
\mathbf{m}_{a}	0.3 GeV	1 GeV	3 GeV	10 GeV
TPC eff. (correct / decays within TPC acceptance)	23.9%	53.8%	76.6%	78%
Accuracy in TPC (correct / all found)	42.7%	82.9%	97.4%	99%

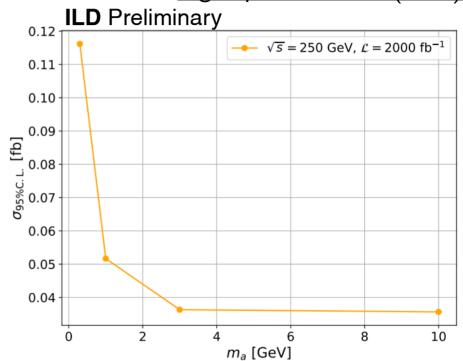
- Efficiency increases with mass (decreasing boost)
- Better performance for smaller radii (as opposed to heavy scalar case)
- **High efficiency** for masses from **1 GeV** (work in progress for 0.3 GeV)

Cross section limits

With the overlay events as the main background, we can also estimate expected 95% C.L. limits on the **signal production cross section**

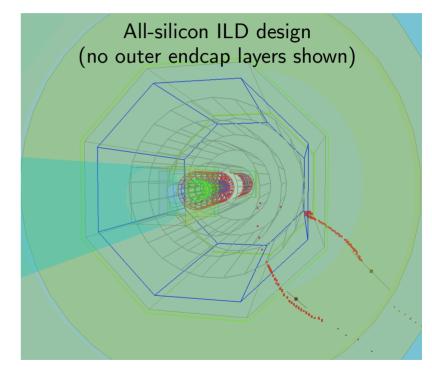
Assume


- 2 ab⁻¹ of data at 250 GeV and 4 ab⁻¹ at 500 GeV ILC,
- 10 yr and 8.5 yr \times 10¹¹ bunch-crossings (BXs),
- 1.05 (1.00) $\gamma\gamma \rightarrow \text{had.}$ (seeable e^+e^- pairs) events per BX,
- total background rejection of $10^{-9}~(10^{-10})
 ightarrow \sim 1150$ expected bg. events


Cross section limits

Light pseudoscalar (ALP)

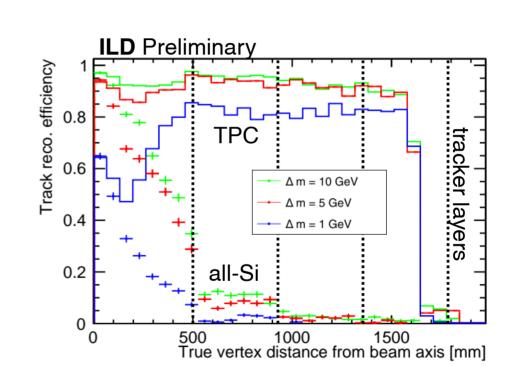
- Valid for kinematic region $p_{\tau}^{vtx} > 1.9$ GeV and decays inside TPC volume
- Conservative limit, not using reconstructed invariant mass



Alternative all-silicon ILD design

Alternative ILD design implemented for tests

- TPC replaced by the silicon Outer Tracker, modified from the CLICdet
- One barrel layer added and endcap layers spacing increased w.r.t. CLICdet
- Conformal tracking algorithm (designed for CLICdet) used for reconstruction at all-silicon ILD


→ Check how the **results** for <u>heavy scalars</u> are influenced by a **change of tracker** design

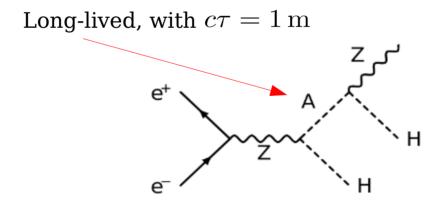
Heavy scalars at all-silicon ILD

- Vertex reconstruction driven by track reconstruction efficiency
- Performance similar to baseline design (TPC) near the beam axis
- Smaller number of hits available → efficiency drops faster with vertex displacement
- For large decay lengths, efficiency significantly higher for "standard" ILD with TPC

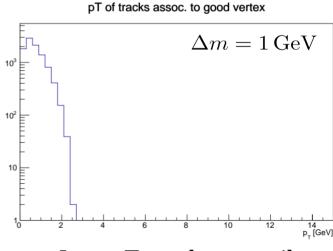
Summary

- We study LLPs in parameter space regions complementary to LHC searches
- Events with two tracks from a displaced vertex analysed
 - \rightarrow a simple algorithm developed, background from the overlay events taken into account; **not a background-free analysis**
- For heavy scalars production, with small mass splittings between LLP and DM and low-momenta decay products, good sensitivity from $\Delta m = 2$ GeV
- Reconstruction of **highly boosted**, **light** ALPs decaying into muons performed with the same algorithm and procedure indicates good sensitivity for **masses** \geq 1 GeV
- Estimated 95% CL limit on signal cross section below 0.05 fb for most scenarios
- Alternative ILD design used for comparison between all-silicon tracker and TPC
 - → tracking tests for heavy scalars confirm **higher reach of TPC** in LLP searches

BACKUP



Test signal scenarios

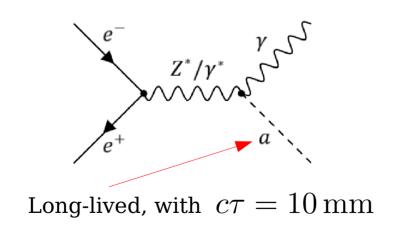

First challenging scenario (small-boost, low-p_T track pair, not pointing towards IP):

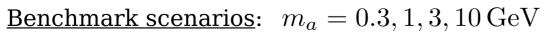
- pair production of heavy, neutral scalars from Inert Doublet Model (IDM):
 <a href="https://doi.org/10.1001/j.neutral.neutr
- A can be long-lived for small mass splittings between A and H
- dominant decay: A \rightarrow HZ*; Z* $\rightarrow \mu\mu$ decay used for vertex reconstruction studies

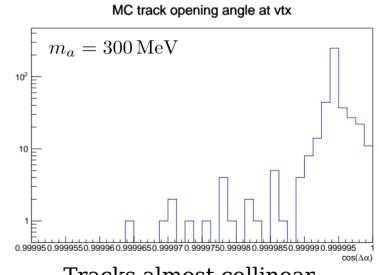
Benchmark scenarios:

$$m_A - m_H = 1, 2, 3, 5 \,\text{GeV}$$

Low-pT tracks prevail



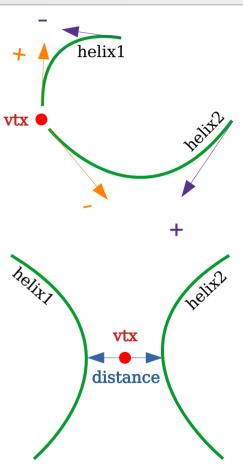

Test signal scenario – highly boosted light LLPs



Exactly the opposite extreme scenario (small LLP mass, very high pT, collinear tracks):

- axion-like particle (ALP) produced alongside hard photon (UFO model by R. Schafer, S. Bruggisser, S. Westhoff)
- Use the **same procedure** as for IDM (same algorithm, cuts), $a \to \mu\mu$ decay used for studies
- Number of decays within acceptance strongly varies between signal scenarios

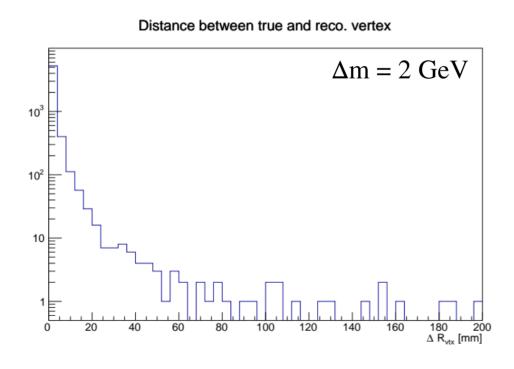
Tracks almost collinear

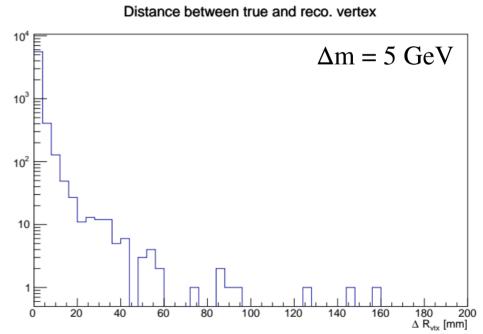


Vertex finding strategy

Approach as simple and general as possible:

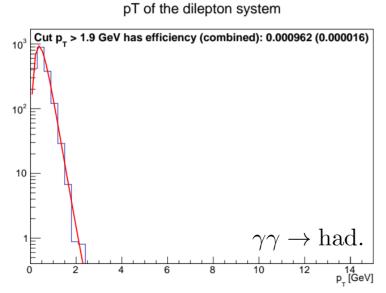
- Consider tracks in pairs
- As the TPC is not sensitive to track direction:
 - → use **both track direction** (charge) **hypothesis** for vertex finding
 - → consider opposite-charge track pairs only
 - → select pair with **closest starting points**
- Reconstruct vertex in between points of closest approach of helices
 - → Require distance < 25 mm

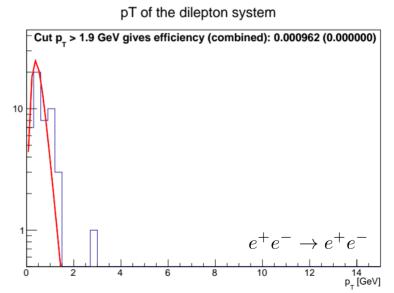




Distance to the true vertex

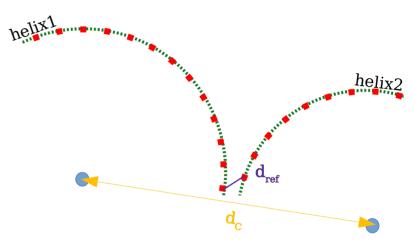
Consider a vertex ,,correct" if distance to the true vtx < 30 mm





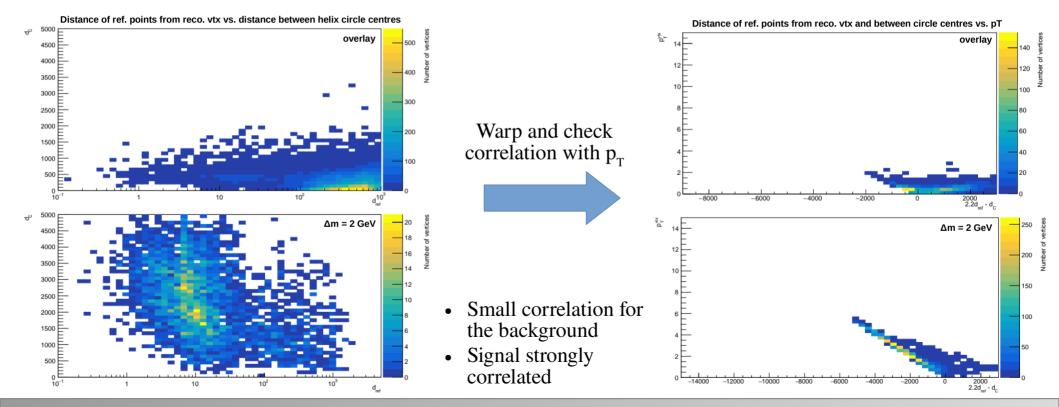
Final selection – pT

- We consider $yy \rightarrow had$. and e^+e^- samples separately
- Estimated background eff. from fitted distributions $\sim 10^{-3} (\sim 10^{-5} 10^{-7})$ with preselection)
- Very small statistics in e^+e^- sample after preselection \rightarrow fit shape from $\gamma\gamma \rightarrow had$. with floating normalisations


Norm = number of events, scaled by corresponding Poisson expectation values

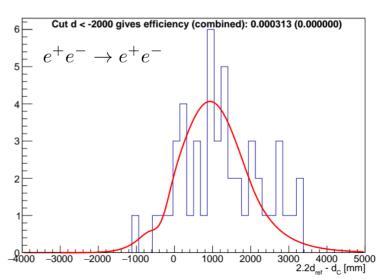
Final selection – other variables

- At least one more (independent) variable needed to achieve the assumed reduction
- We expect that signal tracks should come out of a single point → reference points should be close
- In busier backgound events, still many tracks evade the cuts e.g. curlers, secondary decays
- → either far reference points or close centres of helices


- d_{ref} distance between reference points (TrackStates / first hits)
- d_C distance between centres of helices projections into XY plane

Final selection – second variable

- New variable(s) should be uncorrelated with pT to make the cuts independent
- $2.2d_{ref} d_C$ good for optimal signal-background separation \rightarrow use it to look for correlation



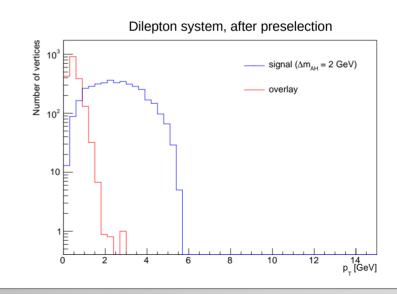
Final selection – second variable

- Same approach as for the pT
- For $2.2d_{ref} d_C < -2000 \text{ mm}$, signal eff. ~37% ($\Delta m = 2 \text{ GeV}$)
- Estimated background eff. from fitted distributions $\sim 10^{-4} (\sim 10^{-6} 10^{-7})$ with preselection)
- Total expected efficiency at the level of $\sim 10^{-9}$ ($\sim 10^{-10}$) for $\gamma\gamma \rightarrow had$. (e^+e^- pairs)

Norm = number of events, scaled by corresponding Poisson expectation values

Overlay events – final selection

- $\sim 10^{10}$ events expected per year: reduction by $\sim 10^{-9}$ needed
- Limited MC statistics \rightarrow high uncertainties already at a reduction factor of $\sim 10^{-5}$

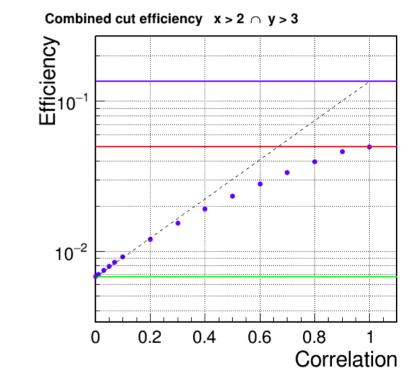

The idea: find <u>independent</u> cuts that **combined** give highest possible efficiency

First (obvious) variable: \mathbf{p}_{T}

Second variable: combination of **distances between reference points** and centres of helices projections
into XY plane (helix circles)

Total expected reduction factor at the level of $\sim 10^{-9}$ ($\sim 10^{-10}$) for $\gamma\gamma \rightarrow had$. (e^+e^- pairs)

Selection assuming correlations



For small correlations *r* between *x* and *y*, total selection efficiency can be described as

$$\epsilon_{xy} = \epsilon_y^{(1-r)} \epsilon_x, \ \epsilon_x > \epsilon_y$$

For cuts on \mathbf{p}_{T} and $\mathbf{2.2d}_{\mathrm{ref}} - \mathbf{d}_{\mathrm{C}}$ (slide 5), assuming 30% correlation, for $\gamma\gamma \to \mathrm{had}$. (e⁺e⁻ pairs) that gives:

- $2.8 \cdot 10^{-6} (3.4 \cdot 10^{-6})$
- $4.6 \cdot 10^{-8} (1.7 \cdot 10^{-9}) \leftarrow \text{combined with preselection}$

