Machine Learning Flavour Tagging for Future Higgs Factories

Mareike Meyer

Second ECFA Workshop on e+e- Higgs/EW/Top Factories, 12/10/2023

Introduction

- current standard for heavy flavour tagging at ILD: LCFIPIus
- based on TMVA (BDTs)

arXiv:1506.08371, https://github.com/lcfiplus/LCFIPlus

Can the heavy flavour tagging be improved by replacing the BDTs used in LCFIPlus with (deep) NNs?

this work: application of CMS DeepJet and ParticleNet to ILD

CMS DeepJet

- successfully applied in many CMS analyses
- allows for usage of low-level features from many jet constituents
- able to deal with variable length of inputs
- allows for ordering of particles according to their assumed importance
- large gain in performance compared e.g. to FCNN (DeepCSV)

Jet Flavour Classification Using DeepJet arXiv:2008.10519, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV arXiv:1712.07158

Training data & data pre-processing

- study events with 6 jets (b,c,u,d,s)
 - 1 : 1 : 3 for b : c : light
- run PV & SV finder, jet clustering and vertex refinement of LCFIPlus
- split sample into training, validation and test (75% / 12.5% / 12.5%)
- training data: oversampling of b & c jets performed to get same number of b,c & light jets
 - → ~4.3 Mio. jets in total
- validation data: keep orginial composition (1:1:3 for b:c: light)
 - → ~394.000 jets in total

data pre-processing:

- if a value of a features is not available, the value is set to -10
- normalize input features to mean 0, std 1

DeepJet: architecture

- classify jets into **three classes**: b jets, c jets & light jets
- ordering of input particles by (as applied in CMS)
 - impact parameter significance for charged jet constituents
 - shortest angular distance to a secondary vertex (by momentum if there is no secondary vertex) for neutral jet constituents
 - flight distance significance for secondary vertices

DeepJet: input features

global variables

p^{jet}, p_T^{jet},

N_{charged jet const.}, N_{neutral jet const.}, N_{SV} additional global variables from LCFIPlus

21 input features

neutral jet constituents

pneutral const., pneutral const./pjet

 ΔR (jet, neutral const.)

is photon?

 $\mathsf{E}_{\mathsf{HCAL}}/\mathsf{E}_{\mathsf{HCAL}+\mathsf{ECAL}}$

5 input features

charged jet constituents

 $p^{track}/p^{jet}, p_T^{track} (rel. jet), \overrightarrow{p}^{track} \cdot \overrightarrow{p}^{jet}/p^{jet}$ $\Delta R(track, jet)$ impact parameter & significances
track reconstructed in PV?
lepton related variables
pid variables $\chi 2/ndf$ **19 input features**

secondary vertices

msv

Ntracks in SV

ΔR(SV, jet)

E_{SV}/E_{jet}, E_{SV}

cos(flight direction_{SV}, \vec{p}_{SV})

3D IP and significance

χ2, ndf

10 input features

DeepJet: confusion matrices

validation data

- identification efficiencies of over 82% for b jets & light jets
- c jet identification efficiency lower (70%)
- especially separation between c jets and light jets should be improved

DeepJet: ROC curves - comparison to LCFIPlus

validation data

better performance of DeepJet training over large parts of the b & c tagging efficiencies w.r.t default LCFIPlus used in ILD

ParticleNet

ParticleNet: input features

η

jet constituents: coordinates

Δη, ΔΦ

jet constituents: features

Δη, ΔΦ

```
\log(p_T), \log(E), \log(p_T/p_T^{jet}), \log(E/E^{jet}),
\overrightarrow{p}^{\text{track}} \cdot \overrightarrow{p}^{\text{jet}}/\text{pjet}
```

ΔR

q

isElectron, isMuon, isChargedHadron, isNeutralHadron, isPhoton

impact parameter & significances

track used in PV?

lepton related variables

pid variables

EHCAL/EHCAL+ECAL

χ2/ndf

28 input features

secondary vertices: coordinates

Δη, ΔΦ secondary vertices: features Δη, ΔΦ $log(p_T)$, E_{SV}/E_{jet} , E_{SV} msv Ntracks in SV χ2/ndf

impact parameters & significances $\cos(\text{flight direction}_{SV}, \vec{p}_{SV})$

14 input features

2 SVs & all jet constituents considered, no ordering of inputs

ParticleNet: confusion matrices

validation data

- identification efficiencies of over 83% for b jets & light jets
- c jet identification efficiency quite low (63%)
- especially separation between c jets and light jets should be improved, larger confusion of c jets with b jets than with DeepJet training

ParticleNet: ROC curves - comparison to LCFIPlus

validation data

better performance than LCFIPlus over large parts of the b and c tagging efficiencies

one of the first trainings with this architecture, a lot of possibilities for optimization (architecture, hyperparameters, features, over-training in c-jet category...)

ParticleNet: ROC curves - comparison to DeepJet

validation data

better performance with DeepJet for b vs. c identification and for c vs. b & light jet identification

better performance of ParticleNet for b jet vs. light jet identification

Summary & outlook

- application of CMS DeepJet tagger and ParticleNet to ILD
- (large) improvements in b and c jet identification vs. c/b and light jet background w.r.t. default LCFIPlus used in ILD
- ParticleNet model not yet optimized
 - → a lot of possibilities to further improve performance

Outlook:

- further optimization of ParticleNet model
- study performance on different processes
- study s-tagging efficiency
- integrate into iLCSoft/Key4hep to make the taggers usable for others

Thank you for your attention!

Backup

Training data: details

- study events with 6 jets (b,c,u,d,s)
 - /pnfs/desy.de/ilc/prod/ilc/mc-opt-3/ild/dst-merged/500-TDR_ws/flavortag/ ILD_I5_o1_v02/v02-00-01/
- run PV & SV finder, jet clustering and vertex refinement of LCFIPlus
- split sample into training, validation and test (75% / 12.5% / 12.5%)
- number of jets in training data:
 - b jets: 434116
 - c jets: 484034
 - light jets: 1449546
 - over-sampling of b and c jets performed to get same number of b,c & light jets
 - → total number of jets in training data: 3 * 1449546 = 4348638
- number of jets in validation data:
 - b jets: 72443
 - c jets: 80890
 - light jets: 241283

DeepJet: input features - global variables

21 input features

- jet momentum
- jet transverse momentum
- number of charged jet constituents
- number of neutral jet constituents
- number of secondary vertices
- additional variables from LCFIPlus:
 - mass of all tracks with d0/z0 significance > 5σ
 - product of b/c/light-quark probabilities of d0/z0 values of all tracks, using b/c/light-quark d0/z0 distributions
 - joint probability in the r-φ plane / in the z projection using all tracks (with IP significance > 5σ)
 - vertex probability taking into account all tracks associated to vertex
 - distance and its significance between the first and second vertex in the jet
 - mass of the vertex (pT corrected)
 - vertex probability of all vertices

DeepJet: input features - charged jet constituents

- track momentum / jet momentum
- transverse track momentum relative to jet
- dot product of jet and track momentum w.r.t. jet momentum
- ΔR(track, jet),
- d0, d0 significance
- Z0, Z0 significance
- 3D impact parameter, 3D impact parameter significance
- track reconstructed in PV?
- is electron?, is muon?, lepton momentum relative to jet, lepton transverse momentum relative to the jet, lepton momentum / jet momentum
- kaon-ness of charged particles, track momentum fraction weighted with kaon-ness
- χ2/ndf

DeepJet: input features - neutral jet constituents

- momentum of neutral jet constituent
- fraction of the jet momentum carried by neutral jet constituent
- ΔR(jet axis, neutral candidate),
- is photon?
- fraction of neutral candidate energy deposited in the hadronic calorimeter

5 input features

DeepJet: input features - secondary vertices

- SV mass
- number of tracks in SV
- ΔR(SV, jet)
- SV energy / jet energy
- SV energy
- cosine of the angle between the secondary vertex flight direction and the direction of the secodary vertex momentum
- 3D impact parameter, 3D impact parameter significance
- χ2, ndf

10 input features

DeepJet: training

- activation functions: relu / softmax (last layer)
- cross entropy loss
- optimizer: Adam
- regularization: batch normalization, dropout (0.1)
- batch size: 200
- learning rate: 0.0003
- number of epochs: 100
- Xavier weight initialization

DeepJet: loss & accuracy

DeepJet: loss & accuracy

accuracy = correctly classified jets / all jets

DeepJet: NN output

ParticleNet: loss & accuracy

ParticleNet: accuracies

accuracy = correctly classified jets / all jets

ParticleNet: NN output

ParticleNet: learning rate

Performance LCFIPlus

Performance LCFIPlus

Variables used by LCFIPlus

Name	Description	Normalization	Used by cat-
	-	factor	egory
trk1d0sig	d0 significance of track with highest d0 significance	1	A, B, C, D
trk2d0sig	d0 significance of track with second highest d0 significance	1	A, B, C, D
trk1z0sig	z0 significance of track with highest d0 significance	1	A, B, C, D
trk2z0sig	z0 significance of track with second highest d0 significance	1	A, B, C, D
trk1pt	transverse momentum of track with highest d0 significance	$1/E_{jet}$	A, B, C, D
trk2pt	transverse momentum of track with second highest d0 significance	$1/E_{jet}$	A, B, C, D
jprobr	joint probability in the r-phi plane using all tracks	1	A, B, C, D
jprobr5sigma	joint probability in the r-phi plane using all tracks having impact parameter significance exceeding 5 sigma	1	A, B, C, D
jprobz	joint probability in the z projection using all tracks	1	A, B, C, D
jprobz5sigma	joint probability in the z projection using all tracks having impact	1	A, B, C, D
	parameter significance exceeding 5 sigma		
d0bprob	product of b-quark probabilities of d0 values for all tracks, using	1	A, B, C, D
101	D/C/Q d0 distributions	1	
ducprob	product of c-quark probabilities of d0 values for all tracks, using	1	А, В, С, D
101	D/C/Q d0 distributions	1	
auqprob	product of q-quark probabilities of d0 values for all tracks, using $b/c/a d0$ distributions	1	А, В, С, D
z0bprob	product of b-quark probabilities of z0 values for all tracks, using	1	A. B. C. D
1	b/c/q z0 distributions		, -, -, -
z0cprob	product of c-quark probabilities of z0 values for all tracks, using	1	A, B, C, D
	b/c/q z0 distributions		, , ,
z0qprob	product of q-quark probabilities of z0 values for all tracks, using	1	A, B, C, D
	b/c/q z0 distributions		
nmuon	number of identified muons	1	A, B, C, D
nelectron	number of identified electrons	1	A, B, C, D
trkmass	mass of all tracks exceeding 5 sigma significance in $d0/z0$ values	1	A, B, C, D

Variables used by LCFIPlus

Name	Description	Normalization	Used by cat-
	•	factor	egory
1vtxprob	vertex probability with all tracks associated in vertices combined	1	B, C, D
vtxlen1	decay length of the first vertex in the jet (zero if no vertex is found)	$1/E_{\rm jet}$	B, C, D
vtxlen2	decay length of the second vertex in the jet (zero if number of vertex is less than two)	$1/E_{\rm jet}$	D
vtxlen12	distance between the first and second vertex (zero if number of vertex is less than two)	$1/E_{\rm jet}$	D
vtxsig1	decay length significance of the first vertex in the jet (zero if no vertex is found)	$1/E_{\rm jet}$	B, C, D
vtxsig2	decay length significance of the second vertex in the jet (zero if number of vertex is less than two)	$1/E_{\rm jet}$	D
vtxsig12	vtxlen12 divided by its error as computed from the sum of the covariance matrix of the first and second vertices, projected along the line connecting the two vertices	$1/E_{\rm jet}$	D
vtxdirang1	the angle between the momentum (computed as a vector sum of track momenta) and the displacement of the first vertex	$E_{\rm jet}$	B, C, D
vtxdirang2	the angle between the momentum (computed as a vector sum of track momenta) and the displacement of the second vertex	$E_{\rm jet}$	D
vtxmult1	number of tracks included in the first vertex (zero if no vertex is found)	1	B, C, D
vtxmult2	number of tracks included in the second vertex (zero if number of vertex is less than two)	1	D
vtxmult	number of tracks which are used to form secondary vertices (summed for all vertices)	1	D
vtxmom1	magnitude of the vector sum of the momenta of all tracks com- bined into the first vertex	$1/E_{\rm jet}$	B, C, D
vtxmom2	magnitude of the vector sum of the momenta of all tracks com- bined into the second vertex	$1/E_{\rm jet}$	D
vtxmass1	mass of the first vertex computed from the sum of track four- momenta	1	B, C, D
vtxmass2	mass of the second vertex computed from the sum of track four- momenta	1	D
vtxmass	vertex mass as computed from the sum of four momenta of all tracks forming secondary vertices	1	B, C, D
vtxmasspe	mass of the vertex with minimum pt correction allowed by the error matrices of the primary and secondary vertices	1	B,C,D
vtxprob	vertex probability; for multiple vertices, the probability P is com- puted as $1-P = (1-P1)(1-P2)(1-PN)$	1	B, C, D

