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• current standard for heavy flavour tagging at ILD: LCFIPlus

• based on TMVA (BDTs)
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Introduction
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LCFIPlus

LCFIPlus

arXiv:1506.08371, 

https://github.com/lcfiplus/LCFIPlus

arXiv:2003.01116

arXiv:2003.01116

➡ Can the heavy flavour tagging be improved by replacing the BDTs used in LCFIPlus  
with (deep) NNs?


application of CMS DeepJet and ParticleNet to ILDthis work:
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CMS DeepJet

• successfully applied in many CMS analyses 

• allows for usage of low-level features from 

many jet constituents

• able to deal with variable length of inputs

• allows for ordering of particles according 

to their assumed importance

• large gain in performance compared e.g. 

to FCNN (DeepCSV)

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023

Jet Flavour Classification Using DeepJet arXiv:2008.10519,

Identification of heavy-flavour jets with the CMS detector in 
pp collisions at 13 TeV arXiv:1712.07158
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RECAP: PARTICLENET
ParticleNet 

jet treated as a permutation-invariant point cloud 

customized graph neural network architecture for jet tagging based on  
Dynamic Graph CNN [Y. Wang et al., arXiv:1801.07829] 

Key building block: EdgeConv 

treating a point cloud as a graph: each point is a vertex 

for each point, a local patch is defined by finding its k-nearest neighbors 

designing a permutation-invariant “convolution” function 

learn an “edge feature” for each center-neighbor pair: eij = MLP(xi, xj) 

same MLP for all neighbor points, and all center points, for symmetry 

aggregate the edge features in a symmetric way: xi’ =  eij 

EdgeConv can be stacked to form a deep network 

learning both local and global structures, in a hierarchical way

meanj
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ParticleNet

• treat jet as „particle cloud“

• input: jet constituents

key building block: edge convolution

• particle cloud: graph, each point: vertex, 

connections between each point & k nearest 
neighboring points: edges


• learn an „edge feature“ for each pair:

 

• MLP: parameters shared among all edges

• aggregation of edge features:
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FIG. 1: The structure of the EdgeConv block.

ber of channels C = (C1, C2, C3), corresponding to the
number of units in each linear transformation layer.

The ParticleNet architecture used in this paper is
shown in Fig. 2a. It consists of three EdgeConv blocks.
The first EdgeConv block uses the spatial coordinates
of the particles in the pseudorapidity-azimuth space to
compute the distances, while the subsequent blocks use
the learned feature vectors as coordinates. The number
of nearest neighbors k is 16 for all three blocks, and the
number of channels C for each EdgeConv block is (64, 64,
64), (128, 128, 128), and (256, 256, 256), respectively. Af-
ter the EdgeConv blocks, a channel-wise global average
pooling operation is applied to aggregate the learned fea-
tures over all particles in the cloud. This is followed by
a fully connected layer with 256 units and the ReLU ac-
tivation. A dropout layer [68] with a drop probability of
0.1 is included to prevent overfitting. A fully connected
layer with two units, followed by a softmax function, is
used to generate the output for the binary classification
task.

A similar network with reduced complexity is also in-
vestigated. Compared to the baseline ParticleNet archi-
tecture, only two EdgeConv blocks are used, with the
number of nearest neighbors k reduced to 7 and the
number of channels C reduced to (32, 32, 32) and (64,
64, 64) for the two blocks, respectively. The number of
units in the fully connected layer after pooling is also
lowered to 128. This simplified architecture is denoted
as “ParticleNet-Lite” and is illustrated in Fig. 2b. The
number of arithmetic operations is reduced by almost an
order of magnitude in ParticleNet-Lite, making it more
suitable when computational resources are limited.

The networks are implemented with Apache MXNet
[69], and the training is performed on a single Nvidia
GTX 1080 Ti graphics card (GPU). A batch size of 384
(1024) is used for the ParticleNet (ParticleNet-Lite) ar-
chitecture due to GPU memory constraint. TheAdamW
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FIG. 2: The architectures of the ParticleNet and the
ParticleNet-Lite networks.

optimizer [70], with a weight decay of 0.0001, is used to
minimize the cross entropy loss. The one-cycle learning
rate (LR) schedule [71] is adopted in the training, with
the LR selected following the LR range test described in
Ref. [71], and slightly tuned afterward with a few trial
trainings. The training of ParticleNet (ParticleNet-Lite)
network uses an initial LR of 3⇥ 10�4 (5⇥ 10�4), rising
to the peak LR of 3 ⇥ 10�3 (5 ⇥ 10�3) linearly in eight
epochs and then decreasing to the initial LR linearly in
another eight epochs. This is followed by a cooldown
phase of four epochs which gradually reduces the LR to
5 ⇥ 10�7 (1 ⇥ 10�6) for better convergence. A snapshot
of the model is saved at the end of each epoch, and the
model snapshot showing the best accuracy on the valida-
tion dataset is selected for the final evaluation.

IV. RESULTS

The performance of the ParticleNet architecture is
evaluated on two representative jet tagging tasks: top
tagging and quark-gluon tagging. In this section, we
show the benchmark results.

A. Top tagging

Top tagging, i.e., identifying jets originating from
hadronically decaying top quarks, is commonly used in
searches for new physics at the LHC. We evaluate the
performance of the ParticleNet architecture on this task
using the top tagging dataset [72], which is an exten-
sion of the dataset used in Ref. [46] with some modifica-
tions. Jets in this dataset are generated with Pythia8
[73] and passed through Delphes [74] for fast detector
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for each point, a local patch is defined by finding its k-nearest neighbors 

designing a permutation-invariant “convolution” function 
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arXiv:1902.08570, Pushing the Limit of Jet 
Tagging With Graph Neural Networks, Huilin 
Qu, talk at ML4Jets2021, July 7, 2021 4
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FIG. 1: The structure of the EdgeConv block.

ber of channels C = (C1, C2, C3), corresponding to the
number of units in each linear transformation layer.

The ParticleNet architecture used in this paper is
shown in Fig. 2a. It consists of three EdgeConv blocks.
The first EdgeConv block uses the spatial coordinates
of the particles in the pseudorapidity-azimuth space to
compute the distances, while the subsequent blocks use
the learned feature vectors as coordinates. The number
of nearest neighbors k is 16 for all three blocks, and the
number of channels C for each EdgeConv block is (64, 64,
64), (128, 128, 128), and (256, 256, 256), respectively. Af-
ter the EdgeConv blocks, a channel-wise global average
pooling operation is applied to aggregate the learned fea-
tures over all particles in the cloud. This is followed by
a fully connected layer with 256 units and the ReLU ac-
tivation. A dropout layer [68] with a drop probability of
0.1 is included to prevent overfitting. A fully connected
layer with two units, followed by a softmax function, is
used to generate the output for the binary classification
task.

A similar network with reduced complexity is also in-
vestigated. Compared to the baseline ParticleNet archi-
tecture, only two EdgeConv blocks are used, with the
number of nearest neighbors k reduced to 7 and the
number of channels C reduced to (32, 32, 32) and (64,
64, 64) for the two blocks, respectively. The number of
units in the fully connected layer after pooling is also
lowered to 128. This simplified architecture is denoted
as “ParticleNet-Lite” and is illustrated in Fig. 2b. The
number of arithmetic operations is reduced by almost an
order of magnitude in ParticleNet-Lite, making it more
suitable when computational resources are limited.

The networks are implemented with Apache MXNet
[69], and the training is performed on a single Nvidia
GTX 1080 Ti graphics card (GPU). A batch size of 384
(1024) is used for the ParticleNet (ParticleNet-Lite) ar-
chitecture due to GPU memory constraint. TheAdamW
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FIG. 2: The architectures of the ParticleNet and the
ParticleNet-Lite networks.

optimizer [70], with a weight decay of 0.0001, is used to
minimize the cross entropy loss. The one-cycle learning
rate (LR) schedule [71] is adopted in the training, with
the LR selected following the LR range test described in
Ref. [71], and slightly tuned afterward with a few trial
trainings. The training of ParticleNet (ParticleNet-Lite)
network uses an initial LR of 3⇥ 10�4 (5⇥ 10�4), rising
to the peak LR of 3 ⇥ 10�3 (5 ⇥ 10�3) linearly in eight
epochs and then decreasing to the initial LR linearly in
another eight epochs. This is followed by a cooldown
phase of four epochs which gradually reduces the LR to
5 ⇥ 10�7 (1 ⇥ 10�6) for better convergence. A snapshot
of the model is saved at the end of each epoch, and the
model snapshot showing the best accuracy on the valida-
tion dataset is selected for the final evaluation.

IV. RESULTS

The performance of the ParticleNet architecture is
evaluated on two representative jet tagging tasks: top
tagging and quark-gluon tagging. In this section, we
show the benchmark results.

A. Top tagging

Top tagging, i.e., identifying jets originating from
hadronically decaying top quarks, is commonly used in
searches for new physics at the LHC. We evaluate the
performance of the ParticleNet architecture on this task
using the top tagging dataset [72], which is an exten-
sion of the dataset used in Ref. [46] with some modifica-
tions. Jets in this dataset are generated with Pythia8
[73] and passed through Delphes [74] for fast detector

ParticleNet edge convolution
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Training data & data pre-processing

• study events with 6 jets (b,c,u,d,s)

- 1 : 1 : 3 for  b : c : light


• run PV & SV finder, jet clustering and vertex refinement of LCFIPlus

• split sample into training, validation and test (75% / 12.5% / 12.5%) 

• training data: oversampling of b & c jets performed to get same number of b,c & light jets


➡ ~4.3 Mio. jets in total

• validation data: keep orginial composition (1 : 1 : 3 for b : c : light)


➡ ~394.000 jets in total


data pre-processing:

• if a value of a features is not available, the value is set to -10

• normalize input features to mean 0, std 1

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023
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DeepJet: architecture

Charged (19 features) x 10

Neutral (5 features) x 10

SVs (10 features) x 2

Global variables (21 features)

1x1 conv. 64/32/32/8

1x1 conv. 32/16/4

1x1 conv. 64/32/32/8

RNN (LSTM) 150
Fully 

connected

200 nodes x1,

100 nodes x7


b

c


light

RNN (LSTM)  50

RNN (LSTM)  50

• classify jets into three classes: b jets, c jets & light jets

• ordering of input particles by (as applied in CMS) 


- impact parameter significance for charged jet constituents

- shortest angular distance to a secondary vertex (by momentum if there is no 

secondary vertex) for neutral jet constituents

- flight distance significance for secondary vertices

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023



ptrack/pjet,  pTtrack (rel. jet), track  jet/pjet

ΔR(track, jet)

impact parameter & significances

track reconstructed in PV?

lepton related variables

pid variables

χ2/ndf

⃗p · ⃗p

8

DeepJet: input features

pjet,  pTjet, 

Ncharged jet const., Nneutral jet const., NSV


additional global variables from LCFIPlus


| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023

global variables

21 input features

charged jet constituents

19 input features

pneutral const., pneutral const./pjet

ΔR(jet, neutral const.)

is photon?


EHCAL/EHCAL+ECAL


neutral jet constituents

5 input features

mSV


Ntracks in SV

ΔR(SV, jet)

ESV/Ejet, ESV


cos(flight directionSV, SV)

3D IP and significance

χ2, ndf

⃗p

secondary vertices 

10 input features
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DeepJet: confusion matrices

purity (columns sum up to 1)efficiency (rows sum up to 1)

• identification efficiencies of over 82% for b jets & light jets

• c jet identification efficiency lower (70%) 

• especially separation between c jets and light jets should be improved

validation data

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023
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DeepJet: ROC curves - comparison to LCFIPlus

better performance of DeepJet training over large parts of the b & c tagging 
efficiencies w.r.t default LCFIPlus used in ILD

validation data

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023

better



ParticleNet



Δη, ΔΦ

log(pT), log(E), log(pT/pTjet), log(E/Ejet),     

track  jet/pjet


ΔR

q

isElectron, isMuon, isChargedHadron, 
isNeutralHadron, isPhoton

impact parameter & significances

track used in PV?

lepton related variables

pid variables

EHCAL/EHCAL+ECAL


χ2/ndf

⃗p · ⃗p

Δη, ΔΦ

12

ParticleNet: input features

Δη, ΔΦ

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023

jet constituents: coordinates secondary vertices: coordinates

2 SVs & all jet constituents 
considered, no ordering of inputs

jet constituents: features

28 input features

secondary vertices: features
Δη, ΔΦ

log(pT), ESV/Ejet, ESV


η

mSV


Ntracks in SV


χ2/ndf

impact parameters &significances

cos(flight directionSV, SV)
⃗p

14 input features
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ParticleNet: confusion matrices
validation data

purity (columns sum up to 1)efficiency (rows sum up to 1)

• identification efficiencies of over 83% for b jets & light jets

• c jet identification efficiency quite low (63%) 

• especially separation between c jets and light jets should be improved, larger confusion of 

c jets with b jets than with DeepJet training

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023



better performance than LCFIPlus over large parts of the b and c tagging efficiencies


one of the first trainings with this architecture, a lot of possibilities for optimization 
(architecture, hyperparameters, features, over-training in c-jet category…)

14

ParticleNet: ROC curves - comparison to LCFIPlus
validation data

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023



better performance with DeepJet for b vs. c identification and for c vs. 
b & light jet identification


better performance of ParticleNet for b jet vs. light jet identification

15

ParticleNet: ROC curves - comparison to DeepJet
validation data

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023
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Summary & outlook

• application of CMS DeepJet tagger and ParticleNet to ILD

• (large) improvements in b and c jet identification vs. c/b and light jet background 

w.r.t. default LCFIPlus used in ILD

• ParticleNet model not yet optimized


➡ a lot of possibilities to further improve performance


Outlook:

• further optimization of ParticleNet model

• study performance on different processes

• study s-tagging efficiency

• integrate into iLCSoft/Key4hep to make the taggers usable for others


| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023
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Training data: details

• study events with 6 jets (b,c,u,d,s) 

- /pnfs/desy.de/ilc/prod/ilc/mc-opt-3/ild/dst-merged/500-TDR_ws/flavortag/

ILD_l5_o1_v02/v02-00-01/

• run PV & SV finder, jet clustering and vertex refinement of LCFIPlus


• split sample into training, validation and test (75% / 12.5% / 12.5%) 

• number of jets in training data:


- b jets: 434116

- c jets: 484034

- light jets: 1449546

➡ over-sampling of b and c jets performed to get same number of b,c & light jets

➡ total number of jets in training data: 3 * 1449546 = 4348638


• number of jets in validation data:

- b jets: 72443

- c jets: 80890

- light jets: 241283

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023



• jet momentum

• jet transverse momentum

• number of charged jet constituents

• number of neutral jet constituents 

• number of secondary vertices

• additional variables from LCFIPlus:


- mass of all tracks with d0/z0 significance > 5σ

- product of b/c/light-quark probabilities of d0/z0 

values of all tracks, using b/c/light-quark d0/z0 
distributions


- joint probability in the r-φ plane / in the z 
projection using all tracks (with IP significance > 
5σ)


- vertex probability taking into account all tracks 
associated to vertex


- distance and its significance between the first 
and second vertex in the jet


- mass of the vertex (pT - corrected)

- vertex probability of all vertices

19

DeepJet: input features - global variables
21 input features

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023
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DeepJet: input features - charged jet constituents

• track momentum / jet momentum

• transverse track momentum relative to jet

• dot product of jet and track momentum w.r.t. jet 

momentum

• ΔR(track, jet), 

• d0, d0 significance

• Z0, Z0 significance

• 3D impact parameter, 3D impact parameter significance

• track reconstructed in PV?

• is electron?, is muon?, lepton momentum relative to jet, 

lepton transverse momentum relative to the jet, lepton 
momentum / jet momentum 


• kaon-ness of charged particles, track momentum 
fraction weighted with kaon-ness


• χ2/ndf

19 input features

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023
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DeepJet: input features - neutral jet constituents

• momentum of neutral jet constituent

• fraction of the jet momentum carried by neutral jet 

constituent

• ΔR(jet axis, neutral candidate), 

• is photon?

• fraction of neutral candidate energy deposited in the 

hadronic calorimeter

5 input features

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023
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DeepJet: input features - secondary vertices

• SV mass

• number of tracks in SV

• ΔR(SV, jet)

• SV energy / jet energy

• SV energy

• cosine of the angle between the secondary vertex 

flight direction and the direction of the secodary 
vertex momentum


• 3D impact parameter, 3D impact parameter 
significance


• χ2, ndf

10 input features

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023
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DeepJet: training

• activation functions: relu / softmax (last layer)

• cross entropy loss

• optimizer: Adam

• regularization: batch normalization, dropout (0.1)

• batch size: 200

• learning rate: 0.0003 

• number of epochs: 100

• Xavier weight initialization

| Machine Learning Flavour Tagging for Future Higgs Factories | Mareike Meyer, 12/10/2023
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DeepJet: loss & accuracy
lo

ss

accuracy = correctly 
classified jets / all jets
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DeepJet: loss & accuracy

accuracy = correctly classified jets / all jets
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DeepJet: NN output
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ParticleNet: loss & accuracy
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ParticleNet: accuracies

accuracy = correctly classified jets / all jets
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ParticleNet: NN output
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ParticleNet: learning rate
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Variables used by LCFIPlus
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Variables used by LCFIPlus
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