

Finanziato dall'Unione europea NextGenerationEU

Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing

Benchmark interactive analysis for future colliders

<u>Adelina D'Onofrio</u>, Elvira Rossi, Francesco Cirotto, Francesco Conventi, Orso Iorio, Antimo Cagnotta, Antonio D'Avanzo, Gianluca Sabella, Bernardino Spisso

Second ECFA Workshop on e+e- Higgs/EW/Top Factories, October 11-13 2023, in Paestum (Salerno)

ICSC Italian Research Center on High-Performance Computing. Big Data and Quantum Computing

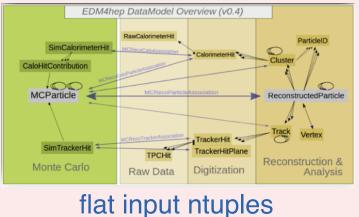
Missione 4 • Istruzione e Ricerca

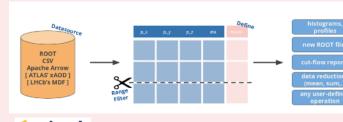
Outline

- Motivations
- The INFN Naples infrastructure
- Use case example, in the FCCee context
- Scalability results
- Towards an HTCondor model
- Conclusions

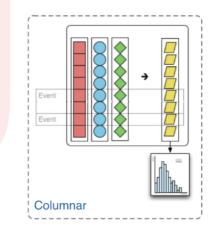
Motivations

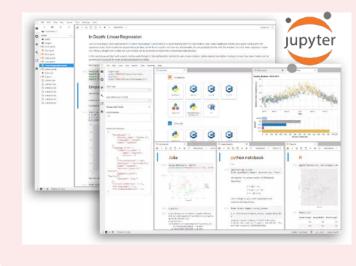
- Most of the LHC searches/measurements rely on locally developed scripts that process the datasets, with parallel tasks and on an asynchronous batch system
- Challenges of the future e⁺e⁻ colliders are pushing to re-think the HEP computing models
 - Impact on several aspects, from software to the computing infrastructure
- From the software perspective, interactive/quasi interactive analysis is a promising paradigm User-friendly environment
 - The implementation is simplified by adopting open-source industry standards: Dask, Jupyter Notebooks and HTCondor
 - Solution States and St
- Preliminary feasibility studies have been pursued on FCCee pseudo-data, exploiting INFN Napoli analysis Facilities (AFs)
 - Distributed infrastructure which leverages Dask

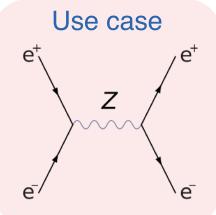




Workflow


EDM4hep input data format




RDataFrame

+ 🎁 dask used as backend

New approach to data analysis

Feasibility study & Preliminary performance evaluation

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

INFN Napoli infrastructure

- Our group developed a local testbed infrastructure in INFN Naples (Italy)
- The local deployment is based on the Open-Stack laaS paradigm
- Starting from the already existing <u>I.Bi.S.CO</u> installation, several updates were performed
- The cluster is made up of 2 identical virtual machines, each equipped with 1CPU quadCore and 8GB RAM, currently expanded up to 12 cores and 64GB
- Rocky Linux 8.6 is the operating system
- 2 nodes are equipped with **Docker** (20.10) for containerisation and **Kubernetes** (1.26.3) for the orchestration
 - Solution of the second second
- The cluster is equipped with JupyterHub & JupyterLAB where the user can play with Python, ROOT & Dask libraries

Efficient & user friendly infrastructure

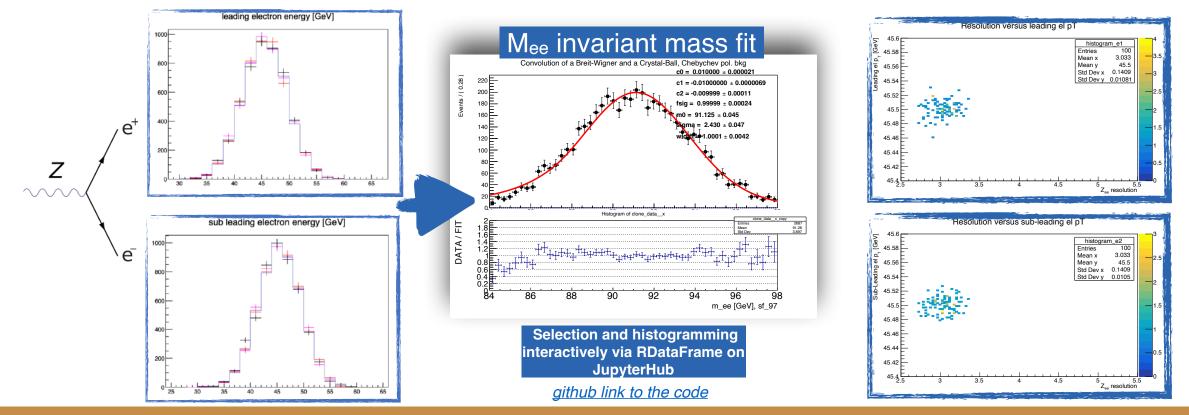
0

IP

 \equiv

- Python & ROOT (v 6.28) kernels available
- Terminal
- Notebook implementation
 - Completely exportable and replicable

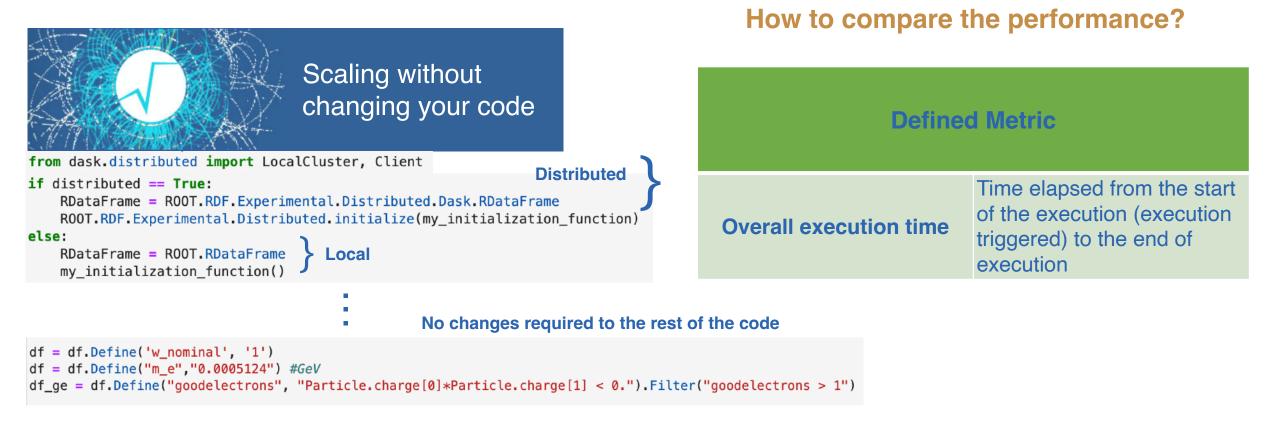
~	-	-	-	-	-	-	_	-	-	_	_	-	-	_	_	-	-
С	File	Edit	View	Run	Kernel	Tabs	Settings	Help				_					
	n te	est_Ze	e3.ipynb)	×	🛛 Laur	ncher		×	🍫 sf_97.j	odf		×	■ functions.	h	×	+
ο		RDataFrame_test															
IP		Notebook															
≔					2		2										
*					Python 3 (ipykerne		root										
	>_ Console																
					Python 3 (ipykerne		root										
				\$_	Othe	er											
					\$_ Termina		Text File		Markdo		Python Fi	ile	Con	Show textual Help			



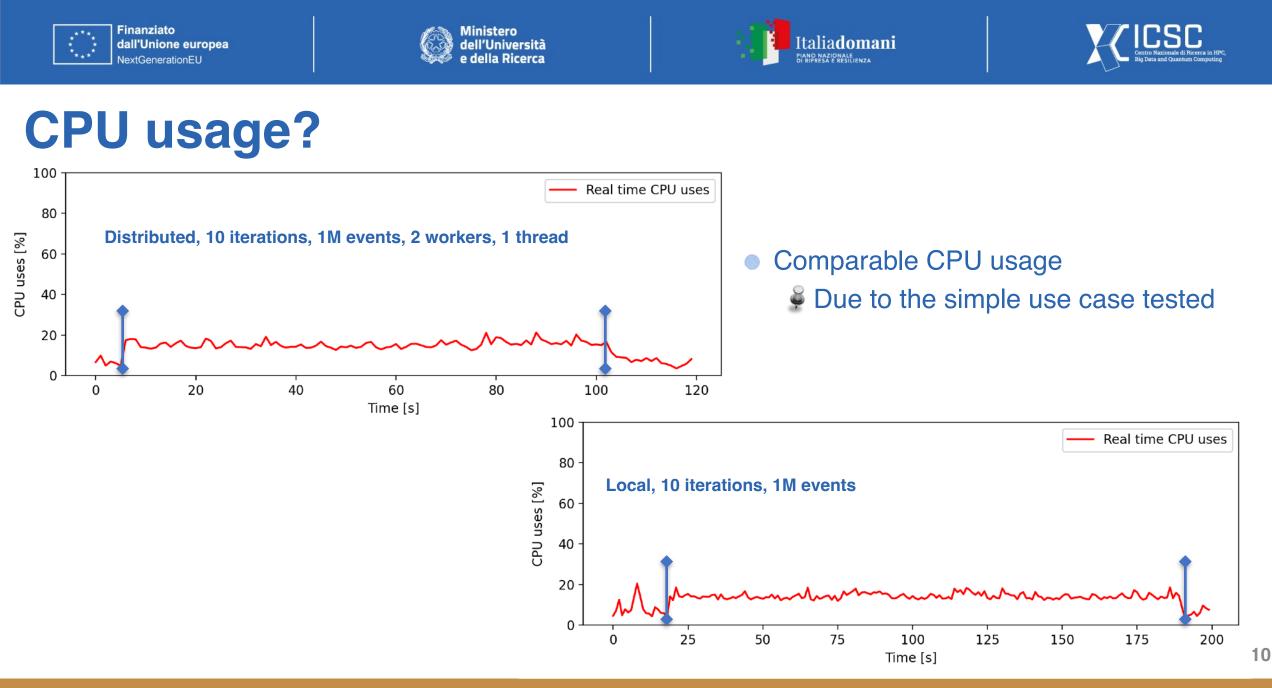
Use case

- FCCee simulation: /eos/experiment/fcc/ee/tmp/ee_Z_ee_EDM4Hep.root
 - § 5k events, scaled to 1M events replicating the available dataset
 - Mimic systematic variations, gaussian smearing the electrons energy to compute Mee resolution

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



Local vs distributed approach

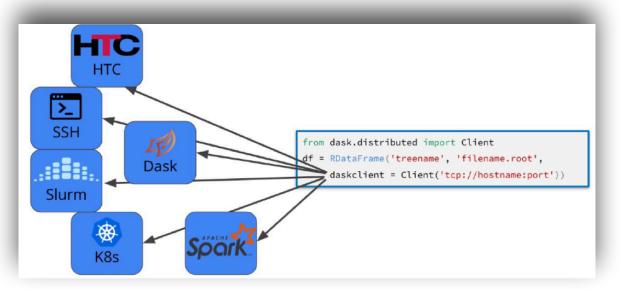


Local vs distributed approach

- Exploiting the distributed approach, the execution time halves wrt the local approach if we iterate over a significative number of energy variations (> 10)
- Changing the number of workers from 2 to 4, the execution time is stable

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca



Towards a Dask + HTCondor model

- Based on INFN Perugia <u>analysis facility</u>
- Introducing HTCondor queues, the performance improves by a factor 2
- Increasing the number of workers is beneficial when running on many iterations

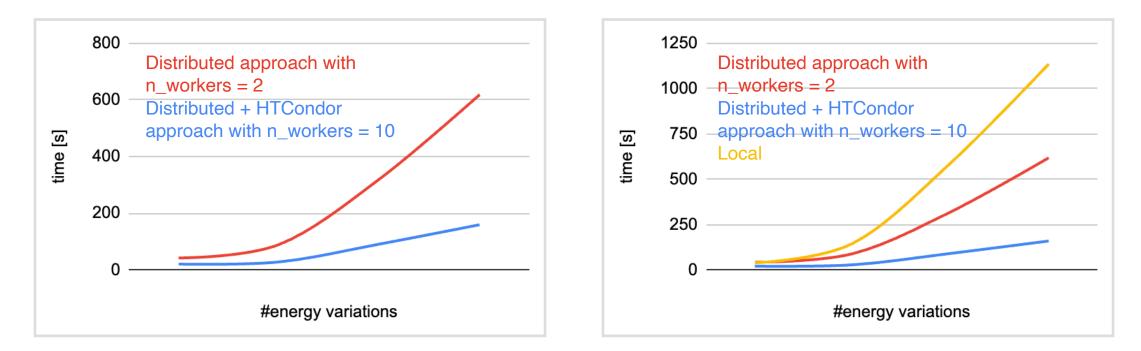
n_workers = 2

# iterations	Dask+HTCondor	Dask			
1	22.96 s	42.02 s			
50	258.35 s	320 s			
100	497.71 s	618 s			

Dask + HTCondor

# iterations	n_workers = 2	n_workers = 10
1	22.96 s	20.36 s
50	258.35 s	90.89 s
100	497.71 s	159.26 s

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



Towards a Dask + HTCondor model

- Exploiting the distributed approach, the execution time halves wrt the local approach
- Moving to a Dask+HTCondor model, we gain up to another factor 2
 - Increasing the number of workers, the execution time further improves

Conclusions & Next Steps

- Interactive analysis feasibility studies on the INFN Naples infrastructure succeeded
- Towards an INFN national cloud infrastructure with a datalake model to facilitate future analyses (hopefully starting from LHC Run 3)
- ➡ Short term goals:
- Dask interface with HTCondor queues on the INFN Naples facility
- Medium-long term goals:
- A single HUB for the data analysis: web based & framework agnostic
- Kubernetes + Dockers: allow the usage of images both locally and over all the distributed resources

Thank you!

