"Here be SUSY" - Prospects for SUSY searches at future colliders ¹

Mikael Berggren¹

¹DESY, Hamburg

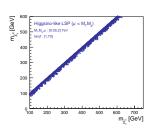
Second ECFA Workshop on e+e- Higgs/EW/Top Factories October 11-13, 2023, Paestum (Salerno)

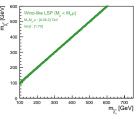
CLUSTER OF EXCELLENCE
OUANTUM UNIVERSE

¹Largely based on arXiv:2003.12391

SUSY: What do we know?

Naturalness, hierarchy, DM, g-2 all prefers light electro-weak sector.

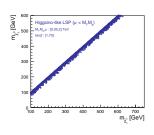

- Except for 3d gen. squarks, the coloured sector - where pp machines excel doesn't enter the game.
- If the LSP is higgsino or wino, EW sector is "compressed". Only for bino-LSP can the difference be large.
- So, most sparticle-decays are via cascades, with small Δ(M) at the end.
- For this, current limits from LHC are only for specific models, and LEP2 sets the scene.

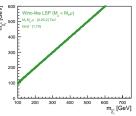

2/24

SUSY: What do we know?

Naturalness, hierarchy, DM, g-2 all prefers light electro-weak sector.

- Except for 3d gen. squarks, the coloured sector - where pp machines excel doesn't enter the game.
- If the LSP is higgsino or wino, EW sector is "compressed". Only for bino-LSP can the difference be large.
- So, most sparticle-decays are via cascades, with small Δ(M) at the end.
- For this, current limits from LHC are only for specific models, and LEP2 sets the scene.





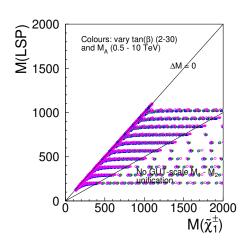
SUSY: What do we know?

Naturalness, hierarchy, DM, g-2 all prefers light electro-weak sector.

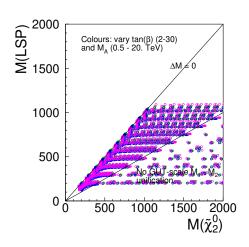
- Except for 3d gen. squarks, the coloured sector - where pp machines excel doesn't enter the game.
- If the LSP is higgsino or wino, EW sector is "compressed". Only for bino-LSP can the difference be large.
- So, most sparticle-decays are via cascades, with small Δ(M) at the end.
- For this, current limits from LHC are only for specific models, and LEP2 sets the scene.

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for $pp \dots$)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1 , M_2 and μ are the main-players.
- ullet Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility \sim a few TeV.
- Also vary other parameters $(\beta, M_A, M_{sfermion})$ with less impact.
- No other prejudice.
- Use SPheno 4.0.5beta to calculate spectra and BR:s, and use Whizard 2.8.0 for cross-sections

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for $pp \dots$)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1 , M_2 and μ are the main-players.
- ullet Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility \sim a few TeV.
- Also vary other parameters $(\beta, M_A, M_{sfermion})$ with less impact.
- No other prejudice.
- Use SPheno 4.0.5beta to calculate spectra and BR:s, and use Whizard 2.8.0 for cross-sections

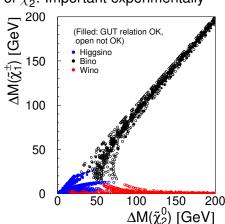

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for $pp \dots$)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1 , M_2 and μ are the main-players.
- Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility ~ a few TeV.
- Also vary other parameters $(\beta, M_A, M_{sfermion})$ with less impact.
- No other prejudice.
- Use SPheno 4.0.5beta to calculate spectra and BR:s, and use Whizard 2.8.0 for cross-sections

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for $pp \dots$)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1 , M_2 and μ are the main-players.
- Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility ~ a few TeV.
- Also vary other parameters $(\beta, M_A, M_{sfermion})$ with less impact.
- No other prejudice.
- Use SPheno 4.0.5beta to calculate spectra and BR:s, and use Whizard 2.8.0 for cross-sections

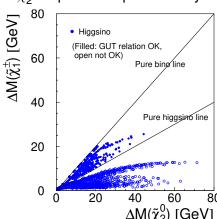

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for $pp \dots$)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1 , M_2 and μ are the main-players.
- Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility ~ a few TeV.
- Also vary other parameters $(\beta, M_A, M_{sfermion})$ with less impact.
- No other prejudice.
- Use SPheno 4.0.5beta to calculate spectra and BR:s, and use Whizard 2.8.0 for cross-sections

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for $pp \dots$)
- Then: LSP is Bino Wino or Higgsino (more or less pure), same for the NLSF
 What happens with spectra,
- M_1, M_2 and I cross-sections, BRs when
- Consider an exploiting this "cube"? p to values that makes the bosinos out-or-reach for any new facility \sim a few TeV.
- Also vary other parameters $(\beta, M_A, M_{sfermion})$ with less impact.
- No other prejudice.
- Use SPheno 4.0.5beta to calculate spectra and BR:s, and use Whizard 2.8.0 for cross-sections

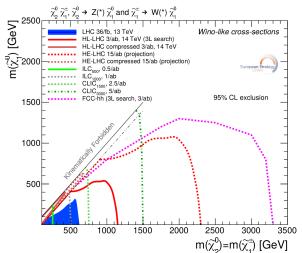
- M_{LSP} vs. $M_{\tilde{\chi}_1^{\pm}}$
- M_{LSP} vs. $M_{\tilde{\chi}^0_2}$
- Colours indicate different settings of the secondary parameters (lesson is that they don't matter much...)
- Open circles indicated cases where GUT-scale unification of M₁ and M₂ is not possible



- M_{LSP} vs. $M_{\tilde{\chi}_1^{\pm}}$
- ullet M_{LSP} vs. $M_{{ ilde \chi}_2^0}$
- Colours indicate different settings of the secondary parameters (lesson is that they don't matter much...)
- Open circles indicated cases where GUT-scale unification of M₁ and M₂ is not possible

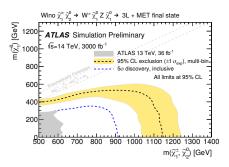

Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

- Three regions:
 - Bino: Both the same, but can be anything.
 - Wino: $\Delta_{\widetilde{\chi}_1^\pm}^\pm$ small, while $\Delta_{\widetilde{\chi}_2^0}$ can be anything.
 - Higgsino: Both often small
- But note, seldom on the "Higgsino line", ie. when the chargino is exactly in the middle of mass-gap between the first and second neutralino

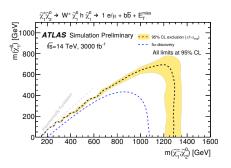


Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

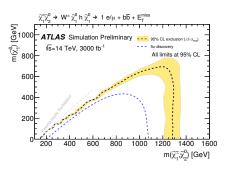
- Three regions:
 - Bino: Both the same, but can be anything.
 - $\bullet \ \, \text{Wino:} \ \, \Delta_{\widetilde{\chi}_1^\pm} \ \, \text{small, while} \ \, \Delta_{\widetilde{\chi}_2^0} \\ \text{can be anything.}$
 - Higgsino: Both often small
- But note, seldom on the "Higgsino line", ie. when the chargino is exactly in the middle of mass-gap between the first and second neutralino.

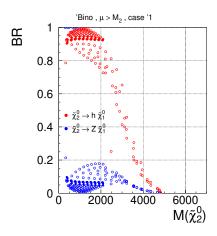


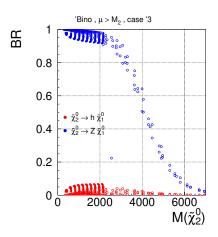
SUSY In The Briefing-book: Bino LSP (ie. large $\Delta(M)$)

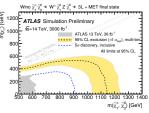


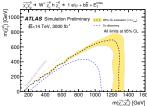
NB: e^+e^- curves are certain discovery, pp are possible exclusion !!!


- ATL-PHYS-PUB-2018-048,
 ATLAS HL-LHC projection,
 extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{LSP} =0, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why:
 Vary signs of w. Ma. and M.
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

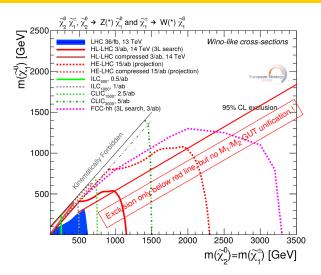

- ATL-PHYS-PUB-2018-048,
 ATLAS HL-LHC projection,
 extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{LSP} =0, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why :
 Vary signs of μ, M₁, and M
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!


- ATL-PHYS-PUB-2018-048,
 ATLAS HL-LHC projection,
 extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{LSP} =0, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why:
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

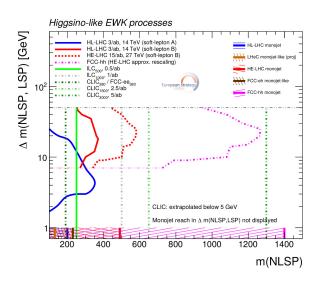

- ATL-PHYS-PUB-2018-048,
 ATLAS HL-LHC projection,
 extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{LSP} =0, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why:
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!



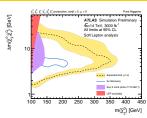
- ATL-PHYS-PUB-2018-048,
 ATLAS HL-LHC projection,
 extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{LSP} =0, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why:
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

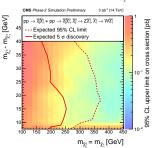


- ATL-PHYS-PUB-2018-048,
 ATLAS HL-LHC projection,
 extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{LSP} =0, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why:
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

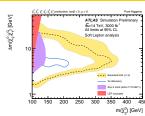


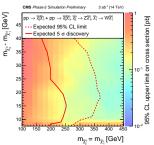
SUSY In The Briefing-book: Bino LSP (ie. large Δ_M)


NB: e^+e^- curves are certain discovery, pp are possible exclusion !!!

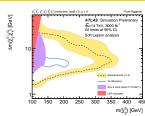

SUSY In The Briefing-book: Wino/Higgsino LSP

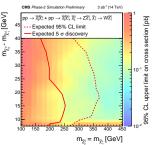
SUSY In The Briefing-book: Wino/Higgsino LSP - Soft lepton Sources


- Soft lepton analysis:
 - ATLAS HL-LHC projection ATL-PHYS-PUB-2018-031.
 - CMS HE-LHC projection (and extrapolated to FCChh)
 CMS-PAS-FTR-18-001.
- Crucial experimental issue: lepton ID
 - To separate e/μ/π, particles must reach calorimeter.
 - ... and FCChh detector has both higher B-field and calorimeter radius (and CMS has that wrt. ATLAS)
- Unlikely that lower $\Delta(M)$ will be excluded in future



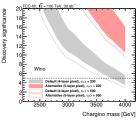
SUSY In The Briefing-book: Wino/Higgsino LSP - Soft lepton Sources

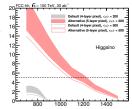

- Soft lepton analysis:
 - ATLAS HL-LHC projection ATL-PHYS-PUB-2018-031.
 - CMS HE-LHC projection (and extrapolated to FCChh)
 CMS-PAS-FTR-18-001.
- Crucial experimental issue: lepton ID
 - To separate $e/\mu/\pi$, particles must reach calorimeter.
 - ... and FCChh detector has both higher B-field and calorimeter radius (and CMS has that wrt. ATLAS)
- Unlikely that lower Δ(M) will be excluded in future



SUSY In The Briefing-book: Wino/Higgsino LSP - Soft lepton Sources

- Soft lepton analysis:
 - ATLAS HL-LHC projection ATL-PHYS-PUB-2018-031.
 - CMS HE-LHC projection (and extrapolated to FCChh)
 CMS-PAS-FTR-18-001.
- Crucial experimental issue: lepton ID
 - To separate $e/\mu/\pi$, particles must reach calorimeter.
 - ... and FCChh detector has both higher B-field and calorimeter radius (and CMS has that wrt. ATLAS)
- Unlikely that lower $\Delta(M)$ will be excluded in future.

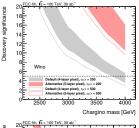


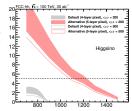


SUSY In The Briefing book: Wino/Higgsino LSP - Very low $\Delta(M)$ sources

(Don't look at the pink curves - they correspond to a detector that is never considered anywhere else i the CDR)

- The "Disappearing tracks" was done by FCChh (in the CDR)
 - FCChh-detector
 - FCChh-ish PU (but still to small: 500 vs. CDR number 955)
 - Assumes only SM loops for mass-splitting, i.e. not SUSY mixing: The "other two" mass-parameres very large.
 - For higgsinos: Only just reaches 2 σ
- A study of the "mono-X" method was done in arXiv:1805.00015, but it is too rudimetary in the experimental aspects to allow for any conclusions.

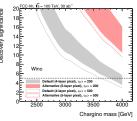


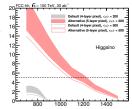


SUSY In The Briefing book: Wino/Higgsino LSP - Very low $\Delta(M)$ sources

(Don't look at the pink curves - they correspond to a detector that is never considered anywhere else i the CDR)

- The "Disappearing tracks" was done by FCChh (in the CDR)
 - FCChh-detector
 - FCChh-ish PU (but still to small: 500 vs. CDR number 955)
 - Assumes only SM loops for mass-splitting, i.e. not SUSY mixing: The "other two" mass-parameres very large.
 - ullet For higgsinos: Only just reaches 2 σ
- A study of the "mono-X" method was done in arXiv:1805.00015, but it is too rudimetary in the experimental aspects to allow for any conclusions.

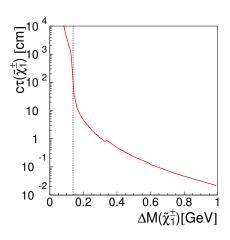




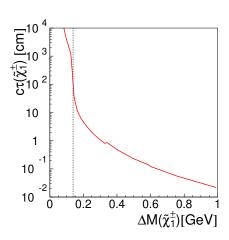
SUSY In The Briefing book: Wino/Higgsino LSP - Very low $\Delta(M)$ sources

(Don't look at the pink curves - they correspond to a detector that is never considered anywhere else i the CDR)

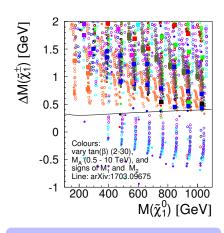
- The "Disappearing tracks" was done by FCChh (in the CDR)
 - FCChh-detector
 - FCChh-ish PU (but still to small: 500 vs. CDR number 955)
 - Assumes only SM loops for mass-splitting, i.e. not SUSY mixing: The "other two" mass-parameres very large.
 - For higgsinos: Only just reaches 2 σ
- A study of the "mono-X" method was done in arXiv:1805.00015, but it is too rudimetary in the experimental aspects to allow for any conclusions.


Why is this important?

- Because $c\tau$ depends on $\Delta(M)$, and $c\tau$ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: $c\tau \gtrsim 6$ cm needed.
- So $\Delta(M) \lesssim 500$ MeV needed.
- $\Delta(M)$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

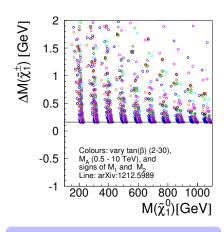

Why is this important?

- Because $c\tau$ depends on $\Delta(M)$, and $c\tau$ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: $c\tau \gtrsim 6$ cm needed.
- So $\Delta(M) \lesssim 500$ MeV needed.
- $\Delta(M)$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.


Why is this important?

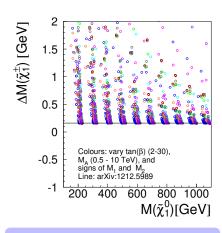
- Because $c\tau$ depends on $\Delta(M)$, and $c\tau$ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: $c\tau \gtrsim 6$ cm needed.
- So $\Delta(M) \lesssim 500$ MeV needed.
- $\Delta(M)$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

Why is this important?

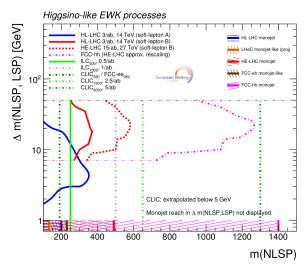

- Because $c\tau$ depends on $\Delta(M)$, and $c\tau$ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: $c\tau \gtrsim 6$ cm needed.
- So $\Delta(M) \lesssim 500$ MeV needed.
- $\Delta(M)$ for Higgsino LSP
- ... and Wino LSF
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

Lines are the "SM-loops only" predictions.

Why is this important?

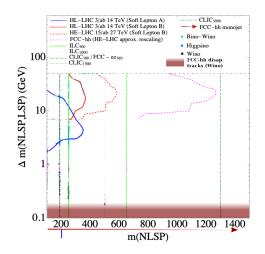

- Because $c\tau$ depends on $\Delta(M)$, and $c\tau$ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: $c\tau \gtrsim 6$ cm needed.
- So $\Delta(M) \lesssim 500$ MeV needed.
- $\Delta(M)$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

Lines are the "SM-loops only" predictions.

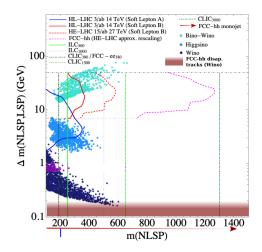

Why is this important?

- Because $c\tau$ depends on $\Delta(M)$, and $c\tau$ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: $c\tau \gtrsim 6$ cm needed.
- So $\Delta(M) \lesssim 500$ MeV needed.
- $\Delta(M)$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

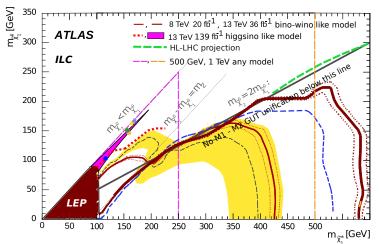
Lines are the "SM-loops only" predictions.


SUSY In The Briefing-book: Wino/Higgsino LSP

So: Disappearing tracks exclusion is actually off the scale!

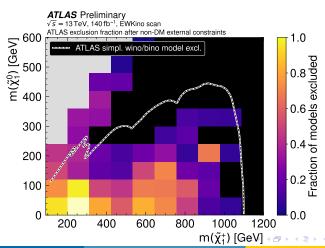


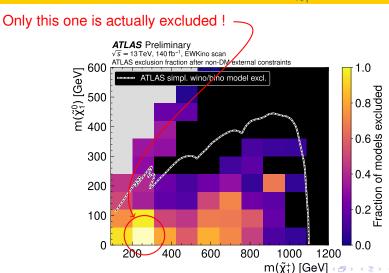
SUSY In The Briefing-book: Re-boot



SUSY In The Briefing-book: Re-boot

With models that are consitent with g-2 and no over-production of DM From arXiv:2103.13403.


Summary: SUSY - All-in-one


ATLAS Eur Phys J C 78,995 (2018), Phys Rev D 101,052002 (2020), arXix:2106.01676;

ATLAS HL-LHC ATL-PHYS-PUB-2018-048; ILC arXiv:2002.01239; LEP LEP LEPSUSYWG/02-04_1

Hot off the press: ATLAS-CONF-2023-055: pMSSM-19 (-7) scan in M_{LSP} vs. $M_{\tilde{\chi}_{i}^{\pm}}$

Hot off the press: ATLAS-CONF-2023-055: pMSSM-19 (-7) scan in M_{LSP} vs. $M_{\tilde{\chi}_{i}^{\pm}}$

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- ullet Future TeV-scale ${
 m e^+e^-}$ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, becuase future pp machines have
 Take-home message
 - disco
 - but looph
- Future Te
 - Full c

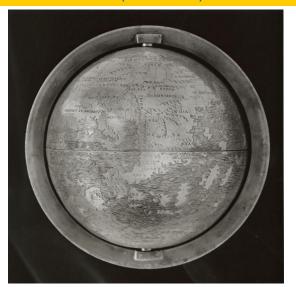
 Without a TeV scale lepton-collider, we would not be able exclude SUSY further than today at the end of this century. LEP2++ would be the final word.

 Except if a future pp machine discovers SUSY, which is a problem we'd like to have! ays be

∕e mit

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, because future pp machines have
 - Take-home message
 - but looph
- Future Te
 - Full c

 Without a TeV scale lepton-collider, we would not be able exclude SUSY further than today at the end of this century. LEP2++ would be the final word.


 Except if a future pp machine discovers SUSY, which is a problem we'd like to have! ays be

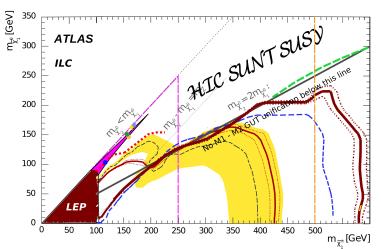
∕e mit

Why the title ?!

The Hunt-Lenox Globe (c:a 1510)

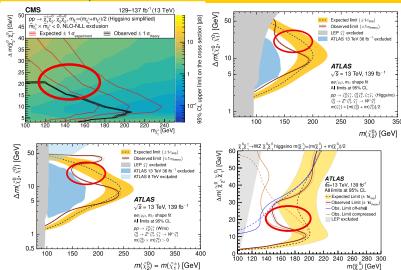
Hic Sunt Dracones

That is ∼ here


Yes - there actually were dragons there!

So...

Here be SUSY!


ATLAS Eur Phys J C 78,995 (2018), Phys Rev D 101,052002 (2020), arXix:2106.01676;

ATLAS HL-LHC ATL-PHYS-PUB-2018-048; ILC arXiv:2002.01239; LEP LEP LEPSUSYWG/02-04.1

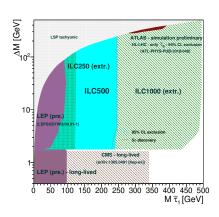
And...

Maybe we start to see the breath of the dragon (latest LHC results...)

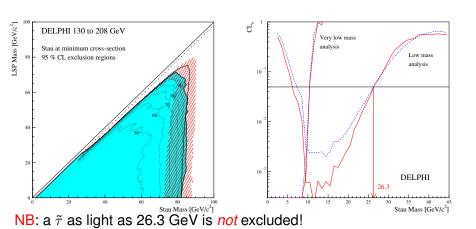
ECFA-HFT ws '23

Thank You!

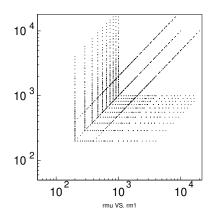

BACKUP


BACKUP SLIDES

ILC projection on Higgsinos and $\tilde{\tau}$:s

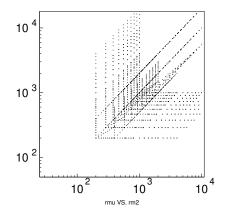

From arXiv:2002.01239

From arXiv:2105.08616


In real life: LEP $\tilde{\tau}$ limits

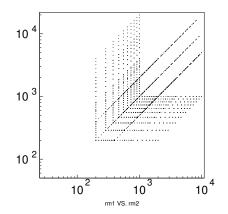
Specifically, like this:

- \bullet μ vs. M_1
- \bullet μ vs. M_2
- \bullet M_1 vs. M_2


Use SPheno 4.0.3 to calculate spectra and BR:s
Use Whizard 2.8.0 for

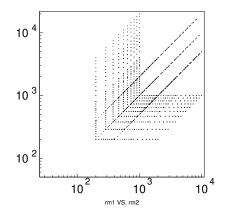
Specifically, like this:

- μ vs. M₁
- \bullet μ vs. M_2
- M_1 vs. M_2


Use SPheno 4.0.3 to calculate spectra and BR:s
Use Whizard 2.8.0 for

Specifically, like this:

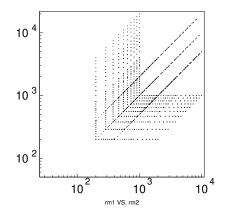
- μ vs. M₁
- \bullet μ vs. M_2
- M₁ vs. M₂


Use SPheno 4.0.3 to calculate spectra and BR:s
Use Whizard 2.8.0 for

Specifically, like this:

- μ vs. M₁
- μ vs. M₂
- M₁ vs. M₂

Use SPheno 4.0.3 to calculate spectra and BR:s
Use Whizard 2.8.0 for cross-sections

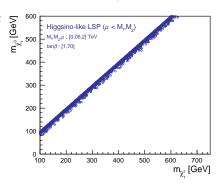


Specifically, like this:

- μ vs. M₁
- \bullet μ vs. M_2
- M₁ vs. M₂

Use SPheno 4.0.3 to calculate

What happens with spectra, cross-sections, BRs when exploiting this "cube"?

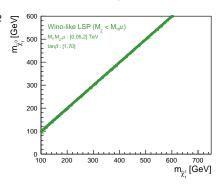

Why would one expect the spectrum to be compressed?

Natural SUSY:

$$\begin{array}{l} \bullet \;\; m_Z^2 \; = \; 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 \, |\mu| \\ \bullet \;\; \Rightarrow \; \text{Low fine-tuning} \Rightarrow \end{array}$$

- ullet \Rightarrow Low fine-tuning = $\mu = \mathcal{O}(ext{weak scale}).$
- Wino-like LSP: Same conclusion
- Only for Bino-like LSP, non-compressed occurs
- But also: the data ...

quite generic:

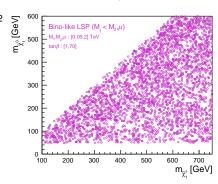

Why would one expect the spectrum to be compressed?

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 | \mu$$

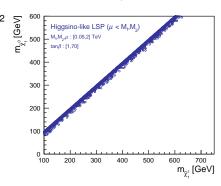
• \Rightarrow Low fine-tuning \Rightarrow

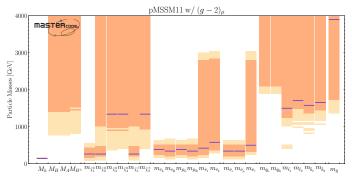
- \Rightarrow Low fine-tuning \Rightarrow $\mu = \mathcal{O}(\text{weak scale}).$
- Wino-like LSP: Same conclusion.
- Only for Bino-like LSP, non-compressed occurs
- But also: the data ...


quite generic:

Why would one expect the spectrum to be compressed?

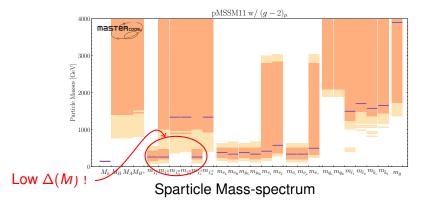
- Natural SUSY:
 - $m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta m_{H_d}^2}{1 \tan^2 \beta} 2 | \mu$
 - \Rightarrow Low fine-tuning \Rightarrow $\mu = \mathcal{O}(\text{weak scale}).$
- Wino-like LSP: Same conclusion.
- Only for Bino-like LSP, non-compressed occurs
- But also: the data ...


quite generic:

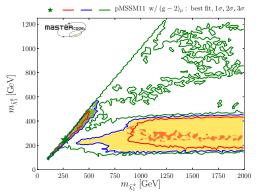

Why would one expect the spectrum to be compressed?

- Natural SUSY:
 - $m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta m_{H_d}^2}{1 \tan^2 \beta} 2 |_{\mu}$ • \Rightarrow Low fine-tuning \Rightarrow
 - $\mu = \mathcal{O}(\text{weak scale}).$
- Wino-like LSP: Same conclusion.
- Only for Bino-like LSP, non-compressed occurs
- But also: the data ...

quite generic:

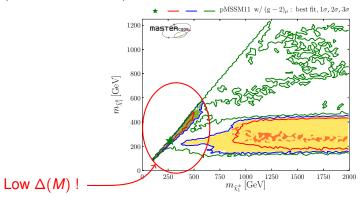


pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

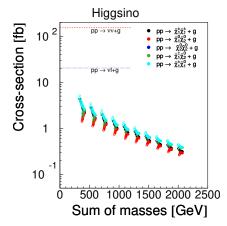


Sparticle Mass-spectrum

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):


pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

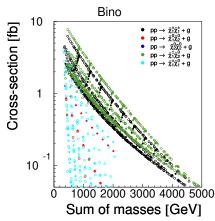
 $M_{\widetilde{\chi}_1^\pm}$ - $M_{\widetilde{\chi}_1^0}$ plane

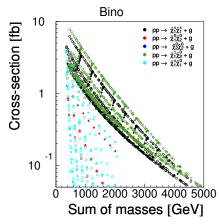


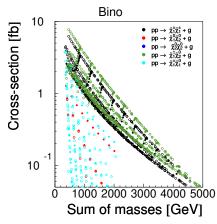
pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

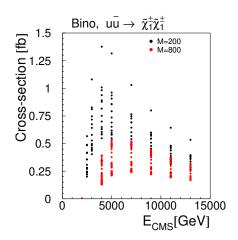


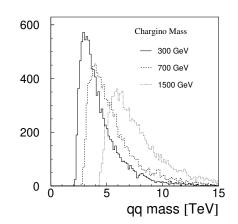
 $M_{\widetilde{\chi}_1^{\pm}}$ - $M_{\widetilde{\chi}_1^{0}}$ plane

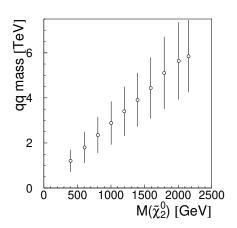

- Higgsino LSP
- Wino LSP
- or Bino LSP
- ullet Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- \Rightarrow Will extend far beyond current at high $\Delta(M)$, but will stay below the $M_{NLSP} = 2 \times M_{LSP}$ line (see backup...)

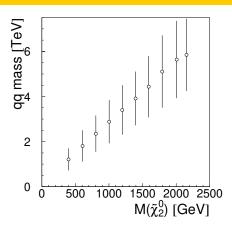

- Higgsino LSP
- Wino LSP
- or Bino LSP
- ullet Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- \Rightarrow Will extend far beyond current at high $\Delta(M)$, but will stay below the $M_{NLSP} = 2 \times M_{LSP}$ line (see backup...)

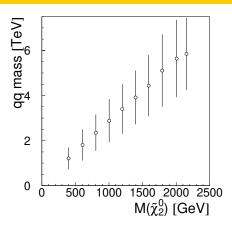

- Higgsino LSP
- Wino LSP
- or Bino LSP
- ullet Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- \Rightarrow Will extend far beyond current at high $\Delta(M)$, but will stay below the $M_{NLSP} = 2 \times M_{LSP}$ line (see backup...)

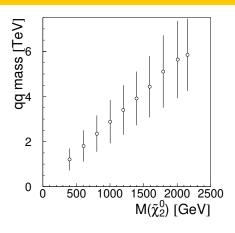

- Higgsino LSP
- Wino LSP
- or Bino LSP
- Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- \Rightarrow Will extend far beyond current at high $\Delta(M)$, but will stay below the $M_{NLSP} = 2 \times M_{LSP}$ line (see backup...)

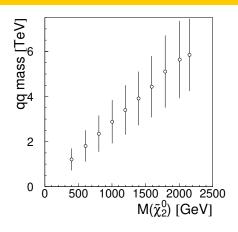

- Higgsino LSP
- Wino LSP
- or Bino LSP
- Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- \Rightarrow Will extend far beyond current at high $\Delta(M)$, but will stay below the $M_{NLSP} = 2 \times M_{LSP}$ line (see backup...)


- Consider fixed m_{qq}, at two masses: First rise w/ β, then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- ⇒ m_{qq} (linear) function of bino-mass


- Consider fixed m_{qq}, at two masses: First rise w/ β, then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- ⇒ m_{qq} (linear) function of bino-mass

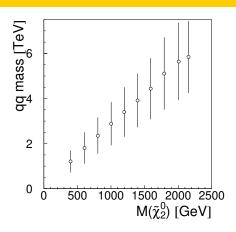

- Consider fixed m_{qq}, at two masses: First rise w/ β, then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- $\Rightarrow m_{qq}$ (linear) function of bino-mass


- fall-off • m_{qq} (linear) function of bosino-mass
 - At these mass-ratios, missing p_T is proportional to m_{qq}
 - ⇒ missing p_T increases linearly with bosino-mass.
 - ⇒ can increase missing p_T-cut linearly when looking for higher masses, with the same efficiency
 - Then the background decreases as much.
 - S/B remains constant along lines in M_v[±] vs. M_{LSP}


- fall-off • m_{qq} (linear) function of bosino-mass
 - At these mass-ratios, missing p_T is proportional to m_{qq}
 - ⇒ missing p_T increases linearly with bosino-mass.
 - ⇒ can increase missing p_T-cut linearly when looking for higher masses, with the same efficiency
 - Then the background decreases as much.
 - S/B remains constant along lines in M_v[±] vs. M_{LSP}

- - At these mass-ratios, missing p_T is proportional to m_{qq}
 - ⇒ missing p_T increases linearly with bosino-mass.
 - ⇒ can increase missing p_T-cut linearly when looking for higher masses, with the same efficiency
 - Then the background decreases as much.
 - S/B remains constant along lines in M_{X1}[±] vs. M_{LSP}

- - At these mass-ratios, missing p_T is proportional to m_{qq}
 - ⇒ missing p_T increases linearly with bosino-mass.
 - ⇒ can increase missing p_T-cut linearly when looking for higher masses, with the same efficiency
 - Then the background decreases as much.
 - S/B remains constant along lines in $M_{\tilde{\chi}_1^{\pm}}$ vs. M_{LSP}

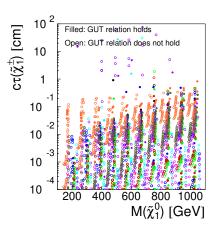


- - At these mass-ratios, missing p_T is proportional to m_{qq}
 - → missing p_T increases
 linearly with bosino-mass.

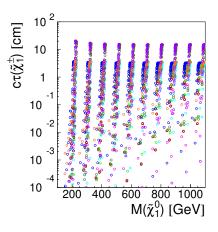
 Uptake

Expect that the limit sticks to the same diagonal as energy is increased.

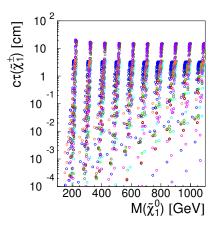
- Then the background decreases as much.
- S/B remains constant along lines in M_{X1}[±] vs. M_{LSP}

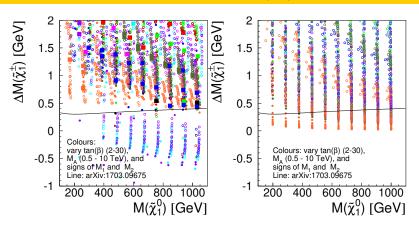

- $c\tau$ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: $c\tau\gtrsim 6$ cm needed.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

Why is this important?

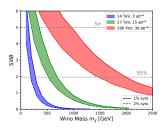

- $c\tau$ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: $c\tau \gtrsim 6$ cm needed.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

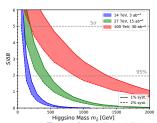
22/24


- $c\tau$ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: $c\tau \gtrsim 6$ cm needed.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

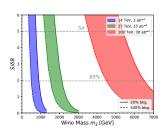

- $c\tau$ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: $c\tau \gtrsim 6$ cm needed.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

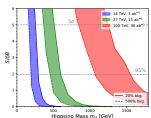
- $c\tau$ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: $c\tau \gtrsim 6$ cm needed.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.



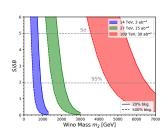

second opinion on Higgsino $\Delta(M)$: feynhiggs

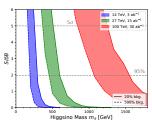
SUSY In The Briefing-book: Wino/Higgsino LSP - Very low $\Delta(M)$ Sources


- Two methods: "Disappearing tracks" and "Mono-X"
 - "Disappearing tracks" (see above)
 - and "Mono-X"
- arxiv:1805.00015, Based on DELPHES with ATLAS-card (⇒ LHC PU...)
- Both from the HE/HL-LHC input to ESU (not FCChh)
- Systematics-limited. Both ATLAS and CMS state ~ 10% in existing "Mono-X" searches (PU 1/20 of FCChh)



SUSY In The Briefing-book: Wino/Higgsino LSP - Very low $\Delta(M)$ Sources


- Two methods: "Disappearing tracks" and "Mono-X"
 - "Disappearing tracks" (see above)
 - and "Mono-X"
- arxiv:1805.00015, Based on DELPHES with ATLAS-card (⇒ LHC PU...)
- Both from the HE/HL-LHC input to ESU (not FCChh)
- Systematics-limited. Both ATLAS and CMS state ~ 10% in existing "Mono-X" searches (PU 1/20 of FCChh)



SUSY In The Briefing-book: Wino/Higgsino LSP - Very low $\Delta(M)$ Sources

- Two methods: "Disappearing tracks" and "Mono-X"
 - "Disappearing tracks" (see above)
 - and "Mono-X"
- arxiv:1805.00015, Based on DELPHES with ATLAS-card (⇒ LHC PU...)
- Both from the HE/HL-LHC input to ESU (not FCChh)
- Systematics-limited. Both ATLAS and CMS state ~ 10% in existing "Mono-X" searches (PU 1/20 of FCChh)

6