A plea for H(650)

WG1-SRCH

SECOND • ECFA • WORKSHOP on e⁺e⁻ Higgs / Electroweak / Top Factories

11-13 October 2023 Paestum / Salerno / Italy

Topics:

- Physics potential of future Higgs and electroweak/top factories
- Required precision (experimental and theoretical)
- EFT (global) interpretation of Higgs factory measurements
- Reconstruction and simulation
 Software
- Detector R&D

A. Kundu, A. Le Yaouanc, P. Mondal, G. Moultaka, F. Richard Calcutta-Orsay-Montpellier collaboration

Introduction I

- With RUN2 data there has been growing evidence for a wide resonance with M=650 GeV and $\Gamma tot=100~GeV$
- Note that the SM Higgs width would be 150 GeV at this mass
- Historically this work started in 2018 <u>1806.04529</u> with the mode ZZ, confirmed by <u>2103.01918</u>, then came WW <u>2104.04762</u> and **h(95)h(125)** <u>2310.01643</u>
- Note in passing the connection between h(95) and H(650)
- Putting them together, one reaches 6 s.d. global (Fisher method)
- Question: how to interpret this resonance in the context of existing phenomenology ?
- Caveat : one cannot exclude that this resonance is a **tensor** (under investigation)

Introduction II

- To make a story short, an interpretation was not possible within present phenomenology
- Hence the low popularity of this channel and our attempt to go beyond the usual 2HD+scalar models
- Including triplets seems viable provided one goes beyond the Georgi Machacek model (one doublet + 2 triplets) by adding a second doublet to GM
- In particular GM predicts ZZ/WW~2 while observation gives ~ten times less
- Reminds us the story of going from **SM to SUSY** which required a second doublet
- Such a SUSY extension has been developed by the Spanish groups (Quiros et al. <u>1308.4025</u>)

Model independent statement

- Here I would like to emphasize a model independent aspect of this resonance: the fact that it couples to W+W- with ~ the same strength as h(125) which breaks down a unitarity sum rule (SR) due to Haber et al. Phys. Rev. D43, 904 (1991)
- There is no remedy for this in 2HD+singlets while models with triplets offer the possibility of a compensation through an H++ (u channel exchange of opposite sign)
- One therefore predicts the appearance of H++->W+W+ with a coupling ~ H(600)W+W-
- Major result which would kill the 2HD models

CMS PAS HIG-20-016

Sum Rule I

• W+W- ->W+W- Haber et al. in <u>P.R.D 43 (1991) 904-912</u>

$$g^{2}(4m_{W}^{2} - 3m_{Z}^{2}c_{W}^{2}) \stackrel{\rho \simeq 1}{\simeq} g^{2}m_{W}^{2} = \sum_{k} g^{2}_{W^{+}W^{-}H_{k}^{0}} - \sum_{l} g^{2}_{W^{+}W^{+}H_{l}^{-}}$$

- So-far we have been able to measure H(650)W+W- and (<u>2302.07276</u>) h(95)W+W-
- There are other candidates like h(151) and H(330) where these measurements are unavailable, but we have ideas on how to deal with them (2308.12180 and <u>https://indico.cern.ch/event/1253605/</u>
- H(650) alone forces to have a contribution of H++->W+W+ with a coupling ~ SM=gmW

First hint from LHC

• Recently at the Belgrade ATLAS meeting: H++(450)->W+W+

• 3.2 s.d. local, 2.5 s.d. global

Sum Rule II

• W+W- -> ZZ allows a similar SR

$$\frac{g^2 m_Z^4 c_W^2}{m_W^2} \stackrel{\rho \simeq 1}{\simeq} g^2 m_Z^2 = \sum_k g_{W^+W^-H_k^0} g_{ZZH_k^0} - \sum_l g_{W^+ZH_l^-}^2 g_{W$$

- This forces a strong coupling for H+->ZW+ which should be observed at LHC
- Note that the result depends on the signs of the coupling constants which are not known from present measurements
- h95ZZ is known from LEP2 (but not its sign !)

Evidence for H+ -> ZW+

2207.03925

- Coincident excess at mH5+~375 GeV for ATLAS (2.8sd) & CMS 3.5 s.d. global
- In GM H5++ and H5+ are mass degenerate which is almost true (see for e-GM <u>2111.14195</u>)
- Obviously H(650) does not have the same content as H5 in GM

Quantitative interpretations

- Combining H++ and H+ gives 4.3 s.d. global.
- Quantitatively, SR predicts $\Gamma_{H++->W+W+}$ and the measured cross section allows to deduce the BR(W+W+) and the total width $\Gamma_{H++->W+W+}$ /BR(W+W+)

Resonance	u GeV	S _H	BR %	Total width GeV	$\sigma_{\text{VBF}}nb$
H++(450)->W+W+	70±11	0.80±0.12	9±3	180±60	770±250
H+(375)->ZW	59±10	0.67±0.11	18±6	50±16	450±170

- → u=70 GeV comes as a surprise: usual lore was BR(W+W+)=1 and u<25 GeV
- \Rightarrow BR(W+W+)~10% requires other modes like H'+W+ or even H'+H'+ (ZH'+ for H+)
- → A light (or several) light H'+ predicted

A light H'+ ?

- There are few hints for this
- B decays into $D\tau$ and $\Lambda\tau$ are reduced by 1.6 and 1.4 s.d. 2305.00614 suggesting mH+~200 GeV
- ATLAS has searched for t->bH+->bbc and found a 3 s.d. local (2.5 global) excess around 130 GeV 2302.11739
- Not allowed in 2HD models for type II <u>1702.04571</u> but allowed for tan β >2 in type I
- Good news for all Higgs factories !
- e-GM predicts on top of H5+, H3+, an extra H2+ which could also be light (blind regions for searches ?)

Precision Measurements

- u=70 GeV deduced from the sum rules seems incompatible with PM
- There is however a GM solution with large α =60° and u=v_{\xi}=v_{\chi}=75 GeV which satisfies PM for h(125)
- Implies that h can have a large triplet component, unnoticed, still passing PM
- True for h->hh ? We need to understand V(h)
- μ95γγ~0.3 does not seem to originate from the charged Higgs sector, given that μ125γγ~1, meaning that H'+(130) does not seem to affect h125

TeV collider reach

- ILC would provide 8000 fb-1 at 1 TeV
- The final states are complex modes (~ttH) requiring the highest $\mathcal L$ and an almost ideal detector
- H(650) mainly produced through VBF (beam polarisation allows a factor ~2 gain, not included)
- Using a e-e- collider one could also produce H ⁻⁻through VBF with polarized beams ~100 fb at 1 TeV

Conclusions

- Growing confidence that BSM physics is at last ! showing up with strong synergy between H(650), H++(450) and H+(375)->ZW and several neutral scalars including h(95)
- This BSM physics does not fit in existing 2HD+S schemes
- Needs an extended version of GM, e-GM or/and a Tensor scenario (in progress)
- Final consolidation for 650 GeV resonance should come soon from CMS with ZZ
- As expected from e-GM, several other signals are lying around, not discussed here
- Very rich prospects for HEP !
- Read our papers and a recent talk at ECFA WG1-SRCH:

<u>2211.11723</u>, <u>2308.12180</u> and <u>https://indico.cern.ch/event/1253605/</u>

• Stay tuned !

Additional slides

F. Richard IJCLab October 2023

A tensor scenario ?

- Seems viable despite several complexities (renormalizability, high energy behaviour, need for unitarization) which can perhaps be mastered as shown in <u>1511.00022</u>
- The large width can be interpreted as due to a 2J+1 factor instead of assuming a replica of the SM Higgs coupling
- **ZZ/WW=0.5** instead of 2 in GM ~agrees with observation within errors
- Could be clearly distinguished from a scalar decay through its **angular distribution** which is forward peaked
- Doubly charged candidates could be scalars or due to an isotensor giving T++, T+ and T0(650)
- Haber et al **sum rule** still apply ? Uncertain but not excluded
- Recently CMS has proposed an interpretation of X(650) as a bulk KK graviton 2310.01643
- The large width seems to disfavour such an interpretation <u>9909255</u>

Results from CMS

• Selecting a scalar solution in ZZ->4I, D_{bkg}>0.6, CMS finds:

- No sign of an excess at ~650 GeV in this subsample
- A tensor resonance, fwd peaked, removed by this selection ?

Bulk KK graviton ?

2310.01643

<u>9909255</u>e+e- -> $G_{KK}(600)$ -> μ + μ - versus k/Mplanck

(just for illustration since e+e- is unlikely to couple to \mathcal{G}_{KK})

b->sγ constraint on mH+

• Light H+ excluded for 2HDM II, not for 2HDM I with $tan\beta > 2$ <u>1702.04571</u>

How to derive the missing couplings ?

- There are indications for several neutral scalars candidates on the market, with unknown couplings to WW/ZZ
- Can one derive them taking into account the present measurements ?
- The answer seems positive assuming there is no CP violation and using available measurements

Process	Channels	References	# s.d. glob. (local)	Michelin
H650	WW/ZZ ggF/VBF h95h125 1806.04429 2009.14791 2103.01918 CMS PAS HIG-20-0 CMS-PAS-HIG-21-		6.1	**
A400	tt ZH320->Zh125h125	1908.01115 ATLAS-CONF-2022-043	5	*
h95	γγ ττ bb (LEP)	0306033 1811.08159 1803.06553 CMS-PAS-HIG-20-002 ATLAS-CONF-2023-035	3.9	~*
h151	γγ +ETmiss	2109.02650	4.8	?
H+375	ZW	ATLAS-CONF-2022-005 2104.04762	(3.5)	
H++450	W+W+	ATLAS-CONF-2023-023 2104.04762	(3.9)	
H+160	bc	EPS-HEP2021, 631	(3)	
h146	μе	CMS-PAS-HIG-22-002	(3.8)	

The neutral sector in e-GM

- e-GM comprises two doublet fields $\phi 1$, $\phi 2$ with vev v1 and v2 and two triplet fields $\chi,\,\xi$ with the same vev u
- For the neutral sector one writes:

$$\begin{pmatrix} h_{95} \\ h_{125} \\ H_{320} \\ H_{650} \end{pmatrix} = \mathscr{X}_{4 \times 4} \begin{pmatrix} \phi_1^0 \\ \phi_2^0 \\ \chi^0 \\ \xi^0 \end{pmatrix}$$

where the matrix is 4X4 unitary **real** (no CPV) with 16-4-6=6 free parameters requiring the **unitary vectors** to be **orthogonal**

- In total there are 6+3 (v1, v2, u) free parameters and 14 observables from LHC measurements
- One needs to choose between various Yukawa coupling patterns and we find that type I (all fermions having the same coupling) gives a reasonable agreement with the data

Example of a solution

	1	2	3	4	htt/SM	ZZ/SM	WW/SM
	φ 1	φ 2	χ	٤			
H95	0.08	-0.56	0	0.82	- 0.96	- 0.34	0.59
H125	0.58	0.58	0.47	0.33	0.99	0.99	1.1
H320	0.31	0.30	-0.88	0.17	0.52	- 1.29	- 0.38
H650	0.74	-0.52	0	-0.43	- 0.90	- 0.43	- 0.91

• v1=-30 v2=102 u=69.5 GeV Type I Yukawa

- Coloured squares have unknown couplings except for h95WW which ~agrees with measurements
- H125~ $\cos\alpha\phi$ as predicted by PM of Chiang et al. <u>1807.10660</u>
- H650 dominated by doublets is produced mainly by ggF contrary to H5
- Predicts μ95γγ~1 while ATLAS+ CMS measure μγγ=0.27+0.1-0.09 (2302.07276)
- There exist another solution with $\mu\gamma\gamma\sim0.3$ w/o H+ contributions
- H320->ZZ should be large: excluded unless H320->hh is very large

W+W- with b jet veto > 50 times larger W+W+ due to tt background L = 59.7 fb⁻¹ (13 TeV) CMS Preliminary

Events/bir

220

180

160

140

120

100

80 E

60 F-

40 E-

20

1.4

0.8

0.6

0

Data / SM

VBF W+W-

Scalars for sum rules

Scalar	Channels	References	# s.d. glob.
H650	WW/ZZ ggFVBF h95h125	1806.04529 2009.14791 <u>2103.01918</u> CMS-PAS-HIG-20-016 CMS-PAS-HIG-21-011	6.1
h95	γγ ττ bb (LEP2)	0306033 1811.08159 1803.06553 CMS-PAS-HIG-20-002 ATLAS-CONF-2023-035	3.9
H++450	W+W+	ATLAS-CONF-2023-023 2104.04762	2.6
H+375	ZW	2207.03925 2104.04762	2.7
H++ & H+			4.3

Historical progress of H(650)

Steps	Mode	Origin Local sd Rem		Remark	Global sd
0 ZZ->4e		ATLAS+CMS	3.8	ATLAS+CMS 113.5 fb-1	2.8
		from [7]		Defines mass & width	
1	ZZ->4ℓ	From ATLAS	3.5	From histogram	3.5
2	WW->ยิ่งยิ่ง From (3.8	Official statement	5
3	h(95)h(125)->bbγγ	From CMS	3.8	Official statement	6.1

1st indication : H->ZZ into 4 leptons

- The **cleanest channel** for discoveries
- From a combination of published histograms <u>1806.04529</u> with 113.5 fb⁻¹ from CMS (2/3) and ATLAS (1/3) one observes a peak with M_H~660 GeV Γ_H~100 GeV, σ~90±25 fb with s/b=46/20 ~3.8 s.d. local significance (5.8 Bayesian), 2.8 s.d. global
- With 139 fb-1 ATLAS ~3.2 s.d. effect at the same mass <u>2103.01918</u>
- With 139 fb-1, with sequential cuts, an excess is observed at the same mass, s/b=9/2 ~2.1 s.d., for VBF->H(660)->ZZ ~30±10 fb (~2 times smaller with a MVA analysis) <u>2009.14791</u>
- The VBF cross section is well below the inclusive cross section ~90fb implying a dominant ggF contribution
- CMS analyses into four leptons, ggF nor VBF, are not yet published
- These results call for a combination of both analyses before one can draw a valid conclusion
- Could stop here but...

Evidence for VBF->H(650)->W+W-->**eev**

F. Richard IJCLab October 2023

- Large top background even after b-jet vetoing
- Wide signal with ±50% mass resolution
- VBF->H(650)->θθνν (μμ, ee and μe) favoured with 3.8 s.d. local (2.6 global) significance
- The VBF cross section ~160±50 fb, close to SM, is >5 times larger than ZZ, inconsistent with GM which predicts for the scalar H5 WW/ZZ=0.5 !
- Within 2HD, h(125)WW from CMS gives sin²(α-β)~0.97±0.09 meaning that H(650)WW~cos²(α-β)~(0.03± 0.09)SM
- 2HD 2 s.d. upper limit shown by the blue line
- Both interpretations are inconsistent !
- An attempt from ATLAS does not reach the same sensitivity (only μe) ATLAS-CONF-2022-066

Table 3: Summary of the signal hypotheses with highest local significance for each f_{VBF} scenario. For each signal hypothesis the resonance mass, production cross sections, and the local and global significances are given.

Γ	Scenario	Mass [GeV]	ggF cross sec. [pb]	VBF cross sec. [pb]	Local signi. $[\sigma]$	Global signi. $[\sigma]$
	SM fypr	800	0.16	0.057	<u>3.2</u>	1.7 ± 0.2
	$f_{VBF} = 1$	650	0.0	0.16	3.8	2.6 ± 0.2
	$f_{VBF} = 0$	950	0.19	0.0	2.6	0.4 ± 0.6
	floating f_{VBF}	650	2.9×10^{-6}	0.16	3.8	2.4 ± 0.2

CMS PAS HIG-20-016

W+W- with b jet veto > 50 times larger W+W+ due to tt background L = 59.7 fb⁻¹ (13 TeV) CMS Preliminary

Events/bir

220

180

160

140

120

100

80 E

60 F-

40 E-

20

1.4

0.8

0.6

0

Data / SM

VBF W+W-

Evidence for gg+VBF->H(650)->Y(90)+h(125)->bb+γγ

F. Richard IJCLab October 20

- 3.8 s.d. for mH=650 GeV and mY=90 GeV shown at ICHEP22
- Mass resolution on Y does not allow to distinguish between Z and h(95) which is by now a "good old friend"
- CP says that bb cannot come from Z->bb but could be h(95) which is another strong candidate seen in 3 channels 2203.13180 +2302.07276
- The cross section is dominant over all other indications ~200 fb but it includes ggF+VBF

SUMMARY OF BSM CANDIDATES

Scalars for sum rules

Scalar	Channels	References	# s.d. glob.
H650	WW/ZZ ggFVBF h95h125	1806.04529 2009.14791 <u>2103.01918</u> CMS-PAS-HIG-20-016 CMS-PAS-HIG-21-011	6.1
h95	γγ ττ bb (LEP2)	0306033 1811.08159 1803.06553 CMS-PAS-HIG-20-002 ATLAS-CONF-2023-035	3.9
H++450	W+W+	ATLAS-CONF-2023-023 2104.04762	2.6
H+375	ZW	2207.03925 2104.04762	2.7
H++ & H+			4.3

LHC inputs for our work

- We choose to select * combined searches with
 > 4 s.d. global significance with the exception of h151 which results from an unofficial combination of CMS & ATLAS data
- This keeps 4 neutral scalars and one pseudo scalar
- No change of significance after a CMS update of h(95)->2γ with RUN1 and RUN2 after some cleaning against Z->e+e-
- ATLAS claims 1.7 s.d. on h95->2γ
- Recent progress for H++ from ATLAS

	Process	Channels	References	# s.d. glob. (local)	Michelin
	H650	WW/ZZ ggF/VBF h95h125	1806.04429 2009.14791 2103.01918 CMS PAS HIG-20-016 CMS-PAS-HIG-21-011	6.1	**
	A400	tt ZH320->Zh125h125	1908.01115 ATLAS-CONF-2022-043	5	*
	h95	γγ ττ bb (LEP)	0306033 1811.08159 1803.06553 CMS-PAS-HIG-20-002 ATLAS-CONF-2023-035	3.9	~*
f	h151	γγ +ETmiss	2109.02650	4.8	?
	H+375	ZW	ATLAS-CONF-2022-005 2104.04762	(3.5)	
	H++450	W+W+	ATLAS-CONF-2023-023 2104.04762	(3.9)	
	H+160	bc	EPS-HEP2021, 631	(3)	
	h146	μе	CMS-PAS-HIG-22-002	(3.8)	

Georgi-Machacek for pedestrians

- Allows I=2, H++, without violating ρ=M²w/Mz²cos²θw=1 at tree level
- Is achieved by combining 1 isospin doublet $(v_{\phi}) + 2$ triplets, one real the other imaginary, with the same vacuum expectations :

$$\rho = \frac{\tilde{v}_{\phi}^2 + 4\tilde{v}_{\chi}^2 + 4\tilde{v}_{\xi}^2}{\tilde{v}_{\phi}^2 + 8\tilde{v}_{\chi}^2} = \frac{v^2}{v^2 + 4(\tilde{v}_{\chi}^2 - \tilde{v}_{\xi}^2)}.$$
 =1 with $v_{\chi} = v_{\xi} = u_{\xi}$

- Predicts a 5-plet of physical states H5++ H5+ H50 H5- H5- Fermiophobic only produced by VBF
- + 3-plet H3+ H30 (CP-odd) -> A(400)
- Mass degeneracy inside multiplets usually assumed but unnecessary for $\rho{=}1$ see $\underline{2111.14195}$
- + Singlets h and h' mixing angle α

The GM model for advanced

• GM is constituted by one doublet ϕ and two triplets, H1 and H1' have following composition one complex χ and one real ξ , with the same vacuum $H_1^0 = \phi^{0,r},$ expectations to get $\rho=1$

 $\rho=1$

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad \chi = \begin{pmatrix} \chi^{++} \\ \chi^+ \\ \chi^{0*} \end{pmatrix}, \quad \xi = \begin{pmatrix} \xi^+ \\ \xi^0 \\ \xi^- \end{pmatrix}$$

$$Y=1/2 \text{ T}=1/2 \text{ v}\phi \qquad Y=1 \text{ T}=1 \text{ v}\chi \qquad Y=0 \quad \text{T}=1 \text{ v}\xi=\text{v}\chi$$
$$\rho = \frac{\tilde{v}_{\phi}^2 + 4\tilde{v}_{\chi}^2 + 4\tilde{v}_{\xi}^2}{\tilde{v}_{\phi}^2 + 8\tilde{v}_{\chi}^2} = \frac{v^2}{v^2 + 4(\tilde{v}_{\chi}^2 - \tilde{v}_{\xi}^2)}.$$

- Only ϕ couples to termions
- They form the following physical states, dominantly triplet r

$$H_5^{++} = \chi^{++},$$

$$H_5^{+} = \frac{(\chi^{+} - \xi^{+})}{\sqrt{2}},$$

$$H_5^{0} = \sqrt{\frac{2}{3}}\xi^{0} - \sqrt{\frac{1}{3}}\chi^{0,r},$$

$$H_3^{+} = -s_H\phi^{+} + c_H\frac{(\chi^{+} + \xi^{+})}{\sqrt{2}},$$

$$H_3^{0} = -s_H\phi^{0,i} + c_H\chi^{0,i}.$$

 $H_1^{0\prime} = \sqrt{\frac{1}{3}}\xi^0 + \sqrt{\frac{2}{3}}\chi^{0,r}.$

The physical states are

 $h = \cos \alpha H_1^0 - \sin \alpha H_1^{0\prime},$ $H = \sin \alpha H_1^0 + \cos \alpha H_1^{0\prime}.$

- Common wisdom: the mixing angle α has to be small to avoid altering the doublet properties of the SM h(125)
- Also $v\xi = v\chi$ small while SR says that vξ=vχ=70 GeV

SGM: a SUSY version of GM

<u>1308.4025</u>

- GM does not necessarily mean compositeness
- SGM provides all the "goodies" of SUSY: Perturbativity, computability
- EWSB naturally triggered
- Mh predicted with less "tension" on stop masses with extra contributions to RC
- Two doublets as needed to interpret H320 and the ZZ/WW decays of H(650)
- DM candidate
- Complex/rich world with ~20 Higgs scalars

$$\Sigma_{-1} = \begin{pmatrix} \frac{\chi^-}{\sqrt{2}} & \chi^0\\ \chi^{--} & -\frac{\chi^-}{\sqrt{2}} \end{pmatrix}, \quad \Sigma_0 = \begin{pmatrix} \frac{\phi^0}{\sqrt{2}} & \phi^+\\ \phi^- & -\frac{\phi^0}{\sqrt{2}} \end{pmatrix}, \quad \Sigma_1 = \begin{pmatrix} \frac{\psi^+}{\sqrt{2}} & \psi^{++}\\ \psi^0 & -\frac{\psi^+}{\sqrt{2}} \end{pmatrix}$$

$$H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix}, \quad H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}$$

TeV projects

SNOWMASS

D. Schulte Higgs Hunting 23

+ CEPC-ee 0.24 TeV SPPC-pp 100 TeV

	CME [TeV]	Lumi per IP [10 ³⁴ cm ⁻² s ⁻¹]	Years to physics	Cost range [B\$]	Power [MW]
FCC-ee	0.24	8.5	13-18	12-18	290
ILC	0.25	2.7	<12	7-12	140
CLIC	0.38	2.3	13-18	7-12	110
ILC	3	6.1	19-24	18-30	400
CLIC	3	5.9	19-24	18-30	550
MC	3	1.8	19-24	7-12	230
MC	10	20	>25	12-18	300
FCC-hh	100	30	>25	30-50	560

Snowmass Paper

arXiv:2203.07622

	Showinassi aper			al XIV.2203.07022				- <u>ilr</u>	
Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	Z pole		Jpgrades		itamaticasi develaparat ten
Centre of mass energy	\sqrt{s}	${\rm GeV}$	250	250	91.2	500	250	1000	
Luminosity	$\mathcal{L} = 10^{34}$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1	
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)	
Repetition frequency	$f_{ m rep}$	Hz	5	5	3.7	5	10	4	
Bunches per pulse	$n_{\rm bunch}$	1	1312	2625	1312/2625	1312/262	2625	2450	
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	2	1.74	
Linac bunch interval	$\Delta t_{\rm b}$	ns	554	366	554/366	554/366	366	366	
Beam current in pulse	$I_{\rm pulse}$	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6	
Beam pulse duration	$t_{\rm pulse}$	$\mu { m s}$	727	961	727/961	727/961	961	897	
Average beam power	$P_{\rm ave}$	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2	
RMS bunch length	σ_z^*	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225	
Norm. hor. emitt. at IP	$\gamma \epsilon_{ m x}$	μm	5	5	5	5	5	5	
Norm. vert. emitt. at IP	$\gamma \epsilon_{ m v}$	nm	35	35	35	35	35	30	
RMS hor. beam size at IP	σ^*_{x}	nm	516	516	1120	474	516	335	
RMS vert. beam size at IP	$\sigma_{\rm v}^*$	nm	7.7	7.7	14.6	5.9	7.7	2.7	
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99%	58.3%	73%	44.5%	
Beamstrahlung energy loss	$\delta_{ m BS}$		2.6%	2.6%	0.16%	4.5%	2.6%	10.5%	
Site AC power	$P_{\rm site}$	MW	111	138	94/115	173/215	198	300	
Site length	$L_{\rm site}$	\mathbf{km}	20.5	20.5	20.5	31	31	40	
					_	-		-	

Table 4.1: Summary table of the ILC accelerator parameters in the initial 250 GeV staged configuration and possible upgrades. A 500 GeV machine could also be operated at 250 GeV with 10 Hz repetition rate, bringing the maximum luminosity to $5.4 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ [26]. *): For operation at the Z-pole additional beam power of 1.94/3.88 MW is necessary for positron production.

Benno List

i i i i