

AITANA

Future e^+e^- colliders as probes of hidden sectors via particle angular correlations

GENERALITAT VALENCIANA

NATIONAL TECHNICAL

U 23

Vasiliki A. Mitsou

MINISTERIO

E. Musumeci, A. Irles, R. Pérez-Ramos, I. Corredoira, E. Sarkisyan-Grinbaum, M.A. Sanchis-Lozano

> 11-13 October 2023 Paestum / Salerno / Italy

SECOND • ECFA • WORKSHOP on e⁺e⁻ Higgs / Electroweak / Top Factories

Angular correlations

- Powerful method to study the underlying mechanisms of particle production
- Uncover possible collective effects resulting from high particle densities
- Two-particle correlation function C₂

"B" does not stand for $C_2(\Delta y, \Delta \phi) = \frac{S(\Delta y, \Delta \phi)}{B(\Delta y, \Delta \phi)}$ "background = SM processes". **Expresses completely** *uncorrelated* pairs (different events) Density of particle pairs produced Density of particle pairs produced within the same event: in the **different** events: $S(\Delta y, \Delta \phi) = \frac{1}{N_{pairs}} \frac{d^2 N^{same}}{d\Delta y \Delta \phi}$ $B(\Delta y, \Delta \phi) = \frac{1}{N_{mix}} \frac{d^2 N^{mix}}{d\Delta y \Delta \phi}$ $N_{pairs} = \iint \frac{d^2 N^{same}}{d\Delta y d\Delta \phi} d\Delta y d\Delta \phi$ $N_{mix} = \iint \frac{d^2 N^{mix}}{d\Delta y d\Delta \phi} d\Delta y d\Delta \phi$ y: rapidity φ : azimuthal angle

Two-particle angular correlations in collisions

- Interesting features depending on colliding particles and track multiplicities
- Also relevant for heavy-ion physics in the quest for a new state of matter

Sanchis-Lozano, Int.J.Mod.Phys.A 24, <u>4529 (2009)</u> Sanchis-Lozano & Sarkisyan-Grinbaum, <u>Phys.Lett.B 781, 505 (2018)</u> Pérez-Ramos, Sanchis-Lozano, Sarkisyan-Grinbaum, <u>Phys.Rev.D 105,</u> <u>053001 (2022)</u>

Hidden Valley (HV)

"Meta-model": large class of theoretical scenarios

Why HV? How to probe it?

- Why Hidden Valley scenario?
 - extra sectors common in string theory, SUSY breaking, extra dimensions, etc.
 - incredibly exciting if found: new particles, forces, dynamics
 - can drastically change phenomenology of SUSY/extra dims/etc.
 - implications for dark matter, early universe cosmology, astrophysics, ...
- Experimental probes
 - relatively weak experimental constraints!
 - vast array of possibilities
 - phenomenology challenging for hadron colliders

QCD-like HV scenario

- Communicator: F_V
- Charged under G_{SM} and G_V
- Pair-produced in collisions
- v-quarks, q_V , and v-gluons, g_V
- Prompt decays

• $F_V \rightarrow f q_V \rightarrow$ hadrons

• $E_V \rightarrow e q_V$

Perturbation in conventional QCD cascade and final hadronisation anomalies in angular correlations e.g. *ridge*-like structures

Carloni & Sjöstrand, JHEP 09 (2010) 105

Production at e^+e^- colliders

- Simulation
 - PYTHIA8
 - FastJet, ee_genkt_algorithm for jet reconstruction
- Analysis
 - ROOT

- ➔ Particle-level analysis presented here
- ➔ Detector-level analysis ongoing

Distribution shapes

- Pre-selection (w.r.t. beam axis)
 - final-state particles with transverse momentum $p_T > 0.5$ GeV
 - □ $|\cos\vartheta| \le 0.99$ for detector acceptance
- Charged-particle multiplicity and di-jet invariant mass different between signal and background
- q_V -dependent cut

Correlation-related variables

- Angular correlations → event shape
- y, φ coordinates defined w.r.t. thrust axis

Thrust axis \hat{n}

Thrust

- Light quark production (background) leads mostly to pencil-like events
- HV production (signal) yields sphere-like events on average
- *q*_V-independent cut on thrust itself

Angular correlations

- Decay $D_{\nu} \rightarrow d q_{\nu}$ initiates a partonic (visible + invisible) shower
- Near-side peak at ($\Delta y \simeq 0$, $\Delta \phi \simeq 0$) mainly from track pairs within same jet
- Near-side ridge with two pronounced bumps at 1.6 < |Δy| < 3, Δφ ≃ 0, in HV scenario
 - absent in background
- Different shape of distribution could be interpreted as a hint of New Physics

Azimuthal yield $Y(\Delta \varphi)$

• Correlation-function projection for $1.6 < |\Delta y| < 3$ (long range)

$$Y(\Delta\phi) = \frac{\int_{1.6 \le |\Delta y| \le 3} S(\Delta y, \Delta\phi) dy}{\int_{1.6 \le |\Delta y| \le 3} B(\Delta y, \Delta\phi) dy}$$

- Two completely different behaviours between signal and background
- $\Delta \varphi \sim 0$
 - bump for the HV case
 - valley in the SM expectation
- $\Delta \varphi \sim \pi$
 - valley (i.e. no contribution) for HV
 - SM contribution remains ~constant

Conclusions

- Two-particle angular correlations in a e⁺e⁻ factory can become a useful tool to discover New Physics
 - e.g. Hidden Valley scenarios
- Such searches are complementary to more conventional searches, thus increasing the discovery potential
- Ongoing work
 - detector effects
 - inclusion of ISR and VBF as backgrounds
 - □ higher energy options: √s = 500 GeV 1 TeV

- E. Musumeci et al, "Two-particle angular correlations in the search for new physics at future e+e– colliders," Proc. LCWS2023, <u>arXiv:2307.14734</u> [hep-ph]
- A. Irles, E. Musumeci, R. Perez-Ramos, I. Corredoira, VAM, E. Sarkisyan-Grinbaum, M.A. Sanchis Lozano, "Exploring hidden sectors with two-particle angular correlations at future e⁺e⁻ colliders," in preparation

2nd ECFA Workshop V.A. Mitsou et al.

Thank you for your attention!

2nd ECFA Workshop V.A. Mitsou et al.

PYTHIA HV codes

name	partner	code	name	partner	code
D_v	d	4900001	E_v	e	4900011
U_v	u	4900002	$ u_{Ev} $	$ u_e $	4900012
S_v	s	4900003	MU_v	μ	4900013
C_v	c	4900004	$ u_{MUv} $	$ u_{\mu} $	4900014
B_v	b	4900005	TAU_v	τ	4900015
T_v	t	4900006	$ u_{TAUv} $	$ u_{ au}$	4900016
g_v		4900021			
γ_v		4900022			
q_v		4900101			

