Focus Topic: beyond semileptonic electroweak penguins

Stéphane Monteil, Clermont University, LPC-IN2P3-CNRS.

On behalf of the conveners of WG1-FLAV group Pablo Goldenzweig and David Marzocca

- The scope of the focussed topic
- The expert team
- The tools
- State-of-the-art
- The objectives.

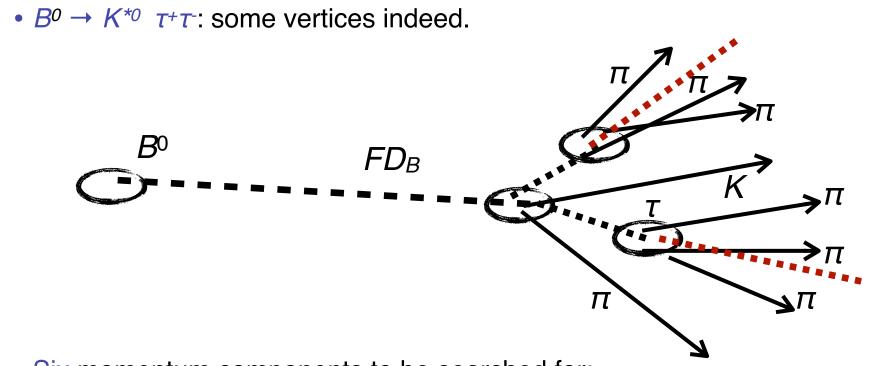
1. The scope of the focussed topic

- Semileptonic decays (Electroweak penguins in the SM) with tau in the final states are not measured. First evidence for neutrinos just out!
- One of the flavour physics sectors that are beyond the reach of the current experimental programme(s). Boost at the Z/ case for luminosity at the Z.
- Occupied some space as a change of paradigm for the search of New Physics from the Flavour problem(s).
- The canonical decays with taus places ultra-demanding requirements on the vertex detector (fully solvable kinematics provided the decay vertices are known).
- We thought to place the transition $b \rightarrow svv$ as another study in this FT to complement the knowledge of $b \rightarrow sll$ transitions at large.

S. Monteil

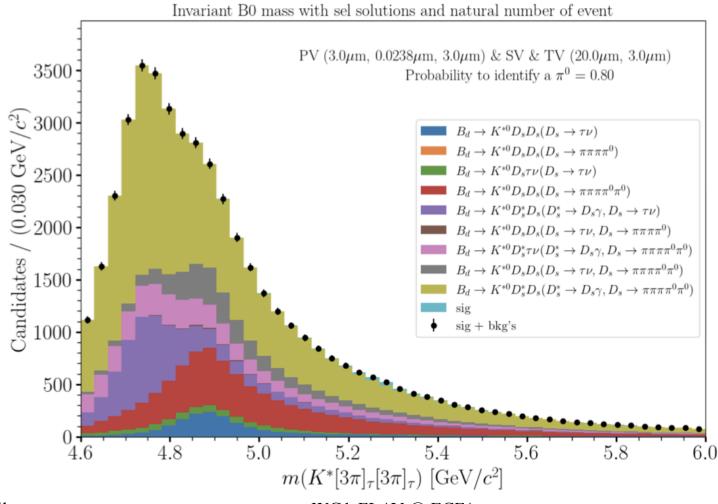
1. The scope of the focussed topic

- The targets:
 - Assess performance requirements for the vertex detector.
 - Identify the detector parameters needed to reach these performance.
- Mandate for the expert team:
 - define the methodology of the prospective study.
 - steer the steps.
 - if you wish, work on it actually.
- Outcome: get out of this study with a contributing paper to the ECFA Yellow Book.

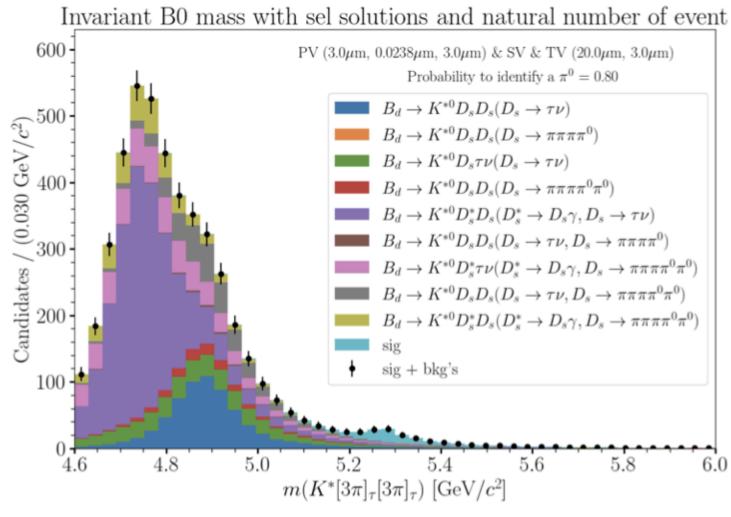

2. The expert team

- Ex-officio: P. Goldenzweig, P. Koppenburg, D. Marzocca, S. Monteil
- Semileptonic decays b→ sτ+τ-analysis: T. Miralles, S. Monteil (Clermont)
- Semileptonic decays b→ svv analysis: A. Wiederhold (Warwick), M. Kenzie (Cambridge)
- Belle II expertise on both subjects: E. Manoni (Perugia), P. Goldenzweig (KIT).
- Vertex detectors: Fabrizio Palla (Pisa), Paula Collins (CERN)
- Theory expertise: J. Kamenik (JSI), Luiz Vale Silva (IFIC)

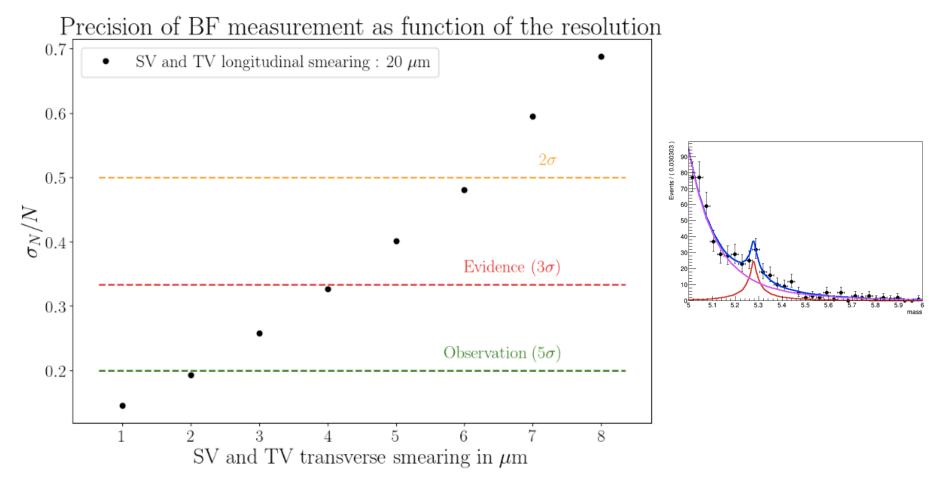
- $B^0 \rightarrow K^{*_0} \tau^+ \tau^-$ at Z pole can be studied as a function of:
 - the luminosity (number of Z decays).
 - the vertex performance.
- Generation of events: one needs here EvtGen:
 - most accurate description of the SM signal ph. sp., as are tau3h.
 - there are a number of backgrounds. Here again, accurate generation in order.


Decay	BF (SM/meas.)	Intermediate decay	BF_had	Additional missing particles
Signal : $B^{0} \rightarrow K^{*}\tau\tau$	1.30×10^{-7}	$ au ightarrow \pi\pi\pi u$, $K^* ightarrow K\pi$	9.57×10^{-11}	
Backgrounds $b \rightarrow c\bar{c}s$:				
$B^{0} \rightarrow K^{*0}D_{s}D_{s}$	2.78× 10 ⁻⁴	$D_s \rightarrow \tau \nu$	5.79×10 ⁻¹⁰	2
		$D_s \rightarrow \tau \nu, \pi \pi \pi \pi^0$	6.52×10 ⁻¹⁰	ν, π ^ο
		$D_s \rightarrow \pi \pi \pi \pi^0$	7.35×10 ⁻¹⁰	2π ⁰ ,
		$D_s \rightarrow \tau \nu, \pi \pi \pi \pi^0 \pi^0$	5.47×10^{-9}	ν, 2π ⁰
		$D_s \rightarrow \pi \pi \pi 2 \pi^0$	5.17×10^{-8}	4π ⁰ ,
$B^{0} \rightarrow K^{*0}D_{s}D_{s}^{*}$	8.78×10^{-4}	$D_s \rightarrow \tau \nu$	1.83×10^{-9}	$2\nu, \gamma/\pi^0$
		$D_s \rightarrow \pi \pi \pi \pi^0 \pi^0$	$1.63 imes 10^{-7}$	$4\pi^{0}, \gamma/\pi^{0}$
Backgrounds $b \rightarrow c \tau \nu$:				
$B^{0} \rightarrow K^{*0}D_{s}\tau\nu$	9.17× 10 ⁻⁶	$D_s \rightarrow \tau \nu$	3.59×10 ⁻¹⁰	2
$B^0 \rightarrow K^{*0}D_s^*\tau\nu$	2.03×10^{-5}	$D_s \rightarrow \pi \pi \pi \pi^0 \pi^0$	7.51×10^{-9}	$\nu, \gamma, 2\pi^{0}$

4. The state-of-the-art (3-prongs tau decays)

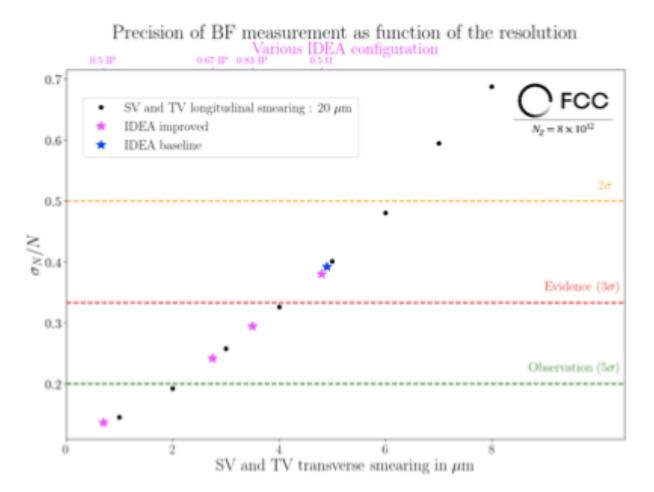

- Six momentum components to be searched for:
 - B^0 momentum direction from $K\pi$ fixes 2 d.o.f.
 - τ momenta direction fixes 4 d.o.f.
 - Mass of the τ provides 2 additional constraints
 - Since both tau legs provide quadratic equations, one ends up w/ 4 solutions.
 - Yet, the system is over-constrained and in principle fully solvable.

• $B^0 \rightarrow K^{*0} \tau^+ \tau^-$: life is complicated at first, even w/ an excellent calorimeter and 5 10¹² Z


WG1-FLAV @ ECFA

• $B^0 \rightarrow K^{*0} \tau^+ \tau^-$: then issue a selection, based on rec. method:

- 4. The state-of-the-art (3-prongs tau decays)
 - $B^0 \rightarrow K^{*0} \tau^+ \tau^-$: How is the branching fraction precision evolving with the vertexing resolution? Emulation of an arbitrarily good detector.



WG1-FLAV @ ECFA

4. The state-of-the-art (3-prongs tau decays)

• $B^0 \rightarrow K^{*0} \tau^+ \tau^-$: Checking how much to improve a vertex detector design? The IDEA example @ FCC-ee.

WG1-FLAV @ ECFA

5. The possible questions / objectives (to drive our discussion)

- Preparing the ground: (physics studies)
 - $B^0 \rightarrow K^{*0} \tau^+ \tau^-$:
 - detector: constraints on vertex detectors.
 - physics: adding up leptonic final states, less handles but more statistics.
 - $B^0 \rightarrow K^{*0} v v$:
 - Belle II just issued a hint of the decay (large BF).
 - address the perspectives at Tera-Z (a paper to be out very soon)
 - should we do more?
 - detector constraints? Calorimetry?
 - Compare in both cases with Belle II anticipated precisions.
 - Address the phenomenological interest of the precisions at hand?

5. Some conclusions from the first Expert Team meeting

- Physics analyses: already advanced. Papers out shortly. Assess comparisons with the anticipated exp. landscape at EW/H/t factory.
- Phenomenology: discussion on the scope to be held at the next ET meeting.
- Detector studies: several suggestions brought by Fabrizio:
 - Highly demanded requirements acknowledged.
 - Distance to IP, Bending of the detector, the pitch, material budget discussed, etc...
 - Bottleneck clearly identified: low momenta final state tracks can only be resolved better with less material (multiple coulombian scattering).
 - Short term: complete fast simulation studies. for different detector design concepts. Change of parameters (design agnostic) to assess the target performance.
 - Next: actual geometries / detector concepts in full simulation studies.