
Next Steps.
● Transmit full ErrorFlow covariance matrix to FitObjects
● Implement correlations between FitObjects, e.g. to

model jet clustering errors

Additional FitObject with pz as
pseudo-measured parameter:
• “Measured” value = pz balance
• “Error”: 𝜎 of ISR spectrum

transformed into a Gaussian

Including ISR & Co.

In ee → ZH → 𝜇𝜇bb at 250 GeV

Quality of fitted photon pz
in WW->4j @ 500 GeV

Impact on Higgs reconstruction.

Software Implementation.

Kinematic Fitting at
Future e+e– Higgs Factories.
Benno List1, Jenny List1
1Deutsches Elektronen-Synchrotron DESY

FitObject. Encapsulates all details of the parametrization, calculates its
own contributions to global 𝜒2 and its derivatives, calculates derivatives of 4-
vector components wrt parameters.

● Optimisation of step length choice in NewtonFitter
● Fundamentally new minimizer, e.g. ML-based?
● Application to multi-jet analyses,

e.g. ee → ZH, WW, tt, ZHH, …

contact:
jenny.list@desy.de

Learn more:
• M. Beckmann, B. List, J. List, Nucl.Instrum.Meth.A 624 (2010) 184-191, https://doi.org/10.1016/j.nima.2010.08.107
• B. List, J. List, LC-TOOL-2009-001, https://bib-pubdb1.desy.de/record/88030
• B. List, Constrained Fits, in Data Analysis in High Energy Physics: A Practical Guide to Statistical Methods, Wiley-

VCH, ISBN 978-3527410583

MarlinKinfit. https://github.com/iLCSoft/MarlinKinfit
Example processors. https://github.com/iLCSoft/MarlinKinfitProcessors
Tutorial. https://github.com/ILDAnaSoft/MarlinKinfitTutorial

Constraint. Calculates its value from 4-vectors of FitObjects and its
derivatives wrt the 4-vector components of the FitObjects.

Fitter. Sets up and solves the
system of equations, administers list of
FitObjects and Constraints.

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 8

Sketch of the Fit Procedure

● Fitter has a list of FitObjects;
each FitObject knows its own nuber of parameters and whether they are
measured
=> Fitter assigns global parameter numbers to all parameters of FitObjects

● Fitter has a list of ConstraintObjects
=> assigns global numbers to them

● Fitter builds up system of equations:

– resets vector and matrix to 0

– asks FitObjects to add their parts

– asks ConstraintObjects to add their parts

● Fitter solves system of equations and
updates parameters of FitObjects

● Fitter checks for convergence (Parameter changes small, constraints fulfilled),
iterates if necessary

From FitObjects

From ConstraintObjects

0 50 100 150 200 250
 M_H

0

500

1000

1500

hRecHMassFitOK

ISRfitted

ISRnotfitted

nofit

0 50 100 150 200 250
 M_H

0

200

400

600

800

1000

1200

hRecHMassFitOK

JEREflow

JER30

nofit

𝜎(Ejet) = 30% √E

Kinematically Constrained Fitting.
Lot of knowledge in e+e- events beyond the raw measurements:
• known four-momentum of the initial state, e.g. Σpy = 0 → hard constraint
• masses of intermediate particles, e.g. M(jj) = MH or MZ → hard or soft constraint
• know which quantities are very well measured and which less so → error parametrisation
=> formulate hypothesis under which to interpret the event
=> test hypothesis by minimizing χ2 underconstraints by adjusting particle momenta

Exploit this to
• improve precision on observables, e.g. invariant masses
• determine unmeasured quantities (e.g. neutrino momentum)
• find best jet pairing
• select / reject events which match / don’t match hypothesis

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 5

How the OPALFitter works

χ2 contours

Starting point

η1

η2

Constrait

contours

Solution

0

The constraint line must be parallel

to the χ2 contours at the solution

The solution must lie on the

0-contour of the constraint

The OPALFitter approximates

the constraint by a tangential plane

One OPALFitter
iteration step

B. List 20.2.2008 (Marlin)Kinfit: Kinematic Fitting for the ILC Page 14

OPALFitter vs. NewtonFitter

One OPALFitter
iteration step

One NewtonFitter
iteration step

OPALFitter:
Approximates constraint
by tangential plane

NewtonFitter:
Approximates constraint
by tangential paraboloid

For simplicity, we arrange these values and constrains functions in vectors !η, !y,
!ξ, and !f .

We introduce K additional unknowns λk, the Lagrange multipliers, that
form a vector !λ.

The total χ2
T that should be minimized is given by

χ2
T (!η, !ξ,!λ) = (!y − !η)T · V −1 · (!y − !η) + 2!λT · !f (!η, !ξ). (2)

Taking the various derivatives leads to the set of equations

∇ηχ2
T = −2V −1 · (!y − !η) + 2!F T

η · !λ = !0, (N equations)
∇ξχ2

T = !F T
ξ · !λ = !0, (J equations)

∇λχ2
T = 2!f (!η, !ξ) = !0, (K equations)

(3)

where Fη and Fξ are matrices of dimension K × N and K × J , respectively,
defined as

(Fη)kn =
∂fk

∂ηn
, (4)

(Fξ)kj =
∂fk

∂ξj
. (5)

(6)

Therefore, the equations to be solved are (after dropping the factors of 2):

!0 = V −1 · (!η − !y) + !F T
η · !λ, (7)

!0 = !F T
ξ · !λ, (8)

!0 = !f (!η, !ξ). (9)

Since the constraints !f (!η, !ξ) and their derivatives Fη and Fξ are in general
nonlinear functions, this system of equations has to be solved iteratively.

Let !ην and !ξν denote the values at iteration ν. Then we can make a Taylor
expansion around this point, and write (neglecting terms of 2nd and higher
order)

!f (!ην+1, !ξν+1) = f (!ην , !ξν) + F ν
η · (!ην+1 − !ην) + F ν

ξ · (!ξν+1 − !ξν). (10)

Now Eqs. (7) to (9) read

!0 = V −1 · (!ην+1 − !y) + (F ν
η)T · !λν+1, (11)

!0 = (F ν
ξ)T · !λν+1, (12)

!0 = !f ν + F ν
η · (!ην+1 − !ην) + F ν

ξ · (!ξν+1 − !ξν). (13)

This system of equations is now solved.

One can solve Eq. (11) for !ην+1:

!ην+1 = !y − V · (F ν
η)T · !λν+1 (14)

6

For simplicity, we arrange these values and constrains functions in vectors !η, !y,
!ξ, and !f .

We introduce K additional unknowns λk, the Lagrange multipliers, that
form a vector !λ.

The total χ2
T that should be minimized is given by

χ2
T (!η, !ξ,!λ) = (!y − !η)T · V −1 · (!y − !η) + 2!λT · !f (!η, !ξ). (2)

Taking the various derivatives leads to the set of equations

∇ηχ2
T = −2V −1 · (!y − !η) + 2!F T

η · !λ = !0, (N equations)
∇ξχ2

T = !F T
ξ · !λ = !0, (J equations)

∇λχ2
T = 2!f (!η, !ξ) = !0, (K equations)

(3)

where Fη and Fξ are matrices of dimension K × N and K × J , respectively,
defined as

(Fη)kn =
∂fk

∂ηn
, (4)

(Fξ)kj =
∂fk

∂ξj
. (5)

(6)

Therefore, the equations to be solved are (after dropping the factors of 2):

!0 = V −1 · (!η − !y) + !F T
η · !λ, (7)

!0 = !F T
ξ · !λ, (8)

!0 = !f (!η, !ξ). (9)

Since the constraints !f (!η, !ξ) and their derivatives Fη and Fξ are in general
nonlinear functions, this system of equations has to be solved iteratively.

Let !ην and !ξν denote the values at iteration ν. Then we can make a Taylor
expansion around this point, and write (neglecting terms of 2nd and higher
order)

!f (!ην+1, !ξν+1) = f (!ην , !ξν) + F ν
η · (!ην+1 − !ην) + F ν

ξ · (!ξν+1 − !ξν). (10)

Now Eqs. (7) to (9) read

!0 = V −1 · (!ην+1 − !y) + (F ν
η)T · !λν+1, (11)

!0 = (F ν
ξ)T · !λν+1, (12)

!0 = !f ν + F ν
η · (!ην+1 − !ην) + F ν

ξ · (!ξν+1 − !ξν). (13)

This system of equations is now solved.

One can solve Eq. (11) for !ην+1:

!ην+1 = !y − V · (F ν
η)T · !λν+1 (14)

6

Method of Lagrange Multipliers

ErrorFlow (c.f. talk by L. Reichenbach)
Inclusion of ISR
removes bias
while still improving
resolution.

https://doi.org/10.1016/j.nima.2010.08.107
https://bib-pubdb1.desy.de/record/88030
https://github.com/iLCSoft/MarlinKinfit
https://github.com/iLCSoft/MarlinKinfitProcessors
https://github.com/ILDAnaSoft/MarlinKinfitTutorial

