Manuela Boscolo

FUTURE CIRCULAR COLLIDER Innovation Study

11-13 October 2023 Paestum / Salerno / Italy

Physics potential of future Higgs and electroweak/top factories Required precision (experimental and theoretical)

Required precision (experimental and theoretical)
 EFT (global) interpretation of Higgs factory measurements
 Reconstruction and simulation
 Software
 Detector R&D

INTERACTION REGION DESIGN OF THE FUTURE CIRCULAR COLLIDER FCC-EE

Manuela Boscolo (INFN-LNF)

Particular thanks to A. Abramov, K. André, A. Ciarma, F. Fransesini, A. Novokhatski, Frank Zimmermann

Second ECFA Workshop on e+e- Higgs / Electroweak / Top Factories Paestum, 11-13 October 2023

2

Outline

☐ FCC

- FCC-ee 4IPs design
- IR design
- Mechanical model of the IR
- Beam losses, Synchrotron Radiation, Beamstrahlung : impact and mitigation
- Next Steps

FCC-ee layout

- Double ring e+e- collider with 91 km circ.
- Common footprint with FCC-hh, except around IPs
- Perfect 4-fold super-periodicity allowing 2 or 4 IPs; large horizontal crossing angle 30 mrad, crab-waist collision optics (*)
- Synchrotron radiation power 50 MW/beam at all beam energies
- Top-up injection scheme for high luminosity
- Requires booster synchrotron in collider tunnel and 20 GeV e+/e- source and linac

(*) Crab-waist scheme, based on two ingredients:

- concept of **nano-beam scheme**: vertical squeeze of the beam at IP and large horizontal crossing angle, large ratio σ_7/σ_x reducing the instantanous overlap area, allowing for a lower β_v^*
- crab-waist sextupoles

FCC-ee: main machine parameters and run plan

Running mode	2	Z	W	ZH	$t\overline{t}$
Number of IPs	2	4	4	4	4
Beam energy (GeV)	45	.6	80	120	182.5
Bunches/beam	12000	15880	688	260	40
Beam current [mA]	1270	1270	134	26.7	4.94
Luminosity/IP $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	180	140	21.4	6.9	1.2
Energy loss / turn [GeV]	0.039	0.039	0.37	1.89	10.1
Synchr. Rad. Power [MW]			100		
RF Voltage 400/800 MHz [GV]	0.08/0	0.08/0	1.0/0	2.1/0	2.1/9.4
Rms bunch length (SR) [mm]	5.60	5.60	3.55	2.50	1.67
Rms bunch length $(+BS)$ [mm]	13.1	12.7	7.02	4.45	2.54
Rms hor. emittance $\varepsilon_{x,y}$ [nm]	0.71	0.71	2.16	0.67	1.55
Rms vert. emittance $\varepsilon_{x,y}$ [pm]	1.42	1.42	4.32	1.34	3.10
Longit. damping time [turns]	1158	1158	215	64	18
Horizontal IP beta β_x^* [mm]	110	110	200	300	1000
Vertical IP beta β_{u}^{*} [mm]	0.7	0.7	1.0	1.0	1.6
Beam lifetime (q+BS+lattice) [min.]	50	250		$<\!28$	<70
Beam lifetime (lum.) [min.]	35	22	16	10	13
	4 years		2 years	3 years	5 years
	5 x 10 ¹² Z	>	$2 \times 10^8 \text{ WW}$	2 x 10⁵ H	2 x 10° tt pa
	LEP x 10 ⁵		EP X 10 ⁴		

• Very high luminosity at Z, W, and Higgs

FCC

- Accumulate > luminosity in 1st 10 years at Higgs, W, and Z than ILC at Higgs
- Accommodates up to 4 experiments \rightarrow robustness, statistics, specialized detectors, engage community
- Run plan naturally starts at low energy with the Z and ramps but could be adjusted using an RF Bypass to start at Higgs

INFŃ

NFN 5/47

Accelerator Design

Well developed layout that will deliver (extremely) high luminosity Z \rightarrow t-tbar

Design benefits from LEP, LHC, DAFNE, and B-factory experience as well as LC, EIC and CEPC development

Have detailed lattices for collider rings and booster Full simulations of beam-beam effects Working on alignment and correction strategies

The accelerator has highly repetitive Arcs with challenging IRs

- \rightarrow Develop prototype of half arc-cell
- \rightarrow Develop IR mock-up

Most R&D is focused on optimizing systems for power efficiency & cost

FCC-ee Interaction Region

FCC-ee IR layout. The face of the first final focus quadrupole QC1, and the free length from the IP, L*, is 2.2 m. The 10 mm central radius is foreseen for ± 9 cm from the IP, and the two symmetric beam pipes with radius of 15 mm are merged at 1.2 m from the IP.

LumiCal constraints & requirements

Goal: absolute luminosity measurement 10⁻⁴ at the Z Standard process Bhabha scattering

- Bhabha cross section 12 nb at Z-pole with acceptance
 62-88 mrad wrt the outgoing pipe
- Requires 50-120 mrad clearance to avoid spoiling the measurement
- The LumiCals are centered on the outgoing beamlines with their faces perpendicular to the beamlines
- Requirements for alignment few hundred µm in radial direction few mm in longitudinal direction

Lumical integration:

- Asymmetrical cooling system in conical pipe to provide angular acceptance to lumical
- LumiCal held by a mechanical support structure

) FC<u>C</u>

8

Impedance-related heat load distribution

parameter	value
beam energy [GeV]	45
beam current [mA]	1280
number bunches/beam	1000
rms bunch length with SR / BS [mm]	4.38 / 14.5
bunch spacing [ns]	32

CST wakefields evaluations Estimate heat load

Fed into ANSYS to dimension the cooling system

	trapezoidal chamber	central chamber
T _{max}	48°C	33°C
т	20.5 °C	20 °C
coolant	(paraffin)	(water)

Ref. A. Novokhatski, F. Fransesini, et al. "Estimated heat load and proposed cooling system in the FCC-ee IR beam pipe", IPAC23

Low impedance vacuum chamber warm and cooled

Central chamber

Conical chamber

Two halvesThick copperAlBeMet pipe

It goes from 90 mm to 1190 mm from IP.

The cooling channels are asymmetric due to the LumiCal acceptance requirements.

Bellows

9

Conical beam pipe material budget

10

see talk by F. Palla

Central Support tube with endcaps

- All elements in the interaction region -beam pipe, vertex, tracker disks, LumiCal- are mounted rigidly on a support cylinder that guarantees mechanical stability and alignment.
- The support tube is a **carbon-fiber lightweight rigid structure**.
- This study has been performed for the IDEA detector, and it works also for ALEGRO (ECAL based)

Integration of the support tube with the detector

- Anchoring points with the detector is under study → we are investigating the anchorage to the calorimeter —
- Required space for vertex and tracker detector services is under study

Main Ring Collimation

- Dedicated halo collimation system in point PF
 - Two-stage betatron and off-momentum collimation in PF
 - Defines the global aperture bottleneck
 - First collimator design

• Synchrotron radiation collimators around the IPs

- 6 collimators and 2 masks upstream of the IPs
- Designed to reduce detector backgrounds and power loads in the inner beampipe due to photon losses

Main Ring Collimation

Complete simulation package for modeling performance in FCC-ee and FCC-hh

(these tools are now being used at EIC as well)

Three layered collimation system has excellent performance

12/47

With a pessimistic 5-minute lifetime at Z \rightarrow 59.2 kW absorbed in PF while < 2 W reach experimental IRs

Super KEKB observations of 'fast beam loss' needs to be understood as it would be hard to protect against

Synchrotron Radiation backgrounds

Simulations with **BDSIM** (GEANT4 toolkit), featuring SR from Gaussian beam core and transverse halo.

Characterisation of the SR produced for all beam energies.

SR produced upstream the IP:

- by the **last dipoles and quadrupoles upstream the IR** can be a background source, to be collimated and masked
- by the IR quads and solenoids collinear with the beam and will hit the beam pipe at the first dipole after the IP.

s [m]	half-gap [m]	plane
-144.69	0.018	н
-112.05	0.014	н
-39.75	0.015	н
-8.64	0.011	н
-5.56	R = 0.015	H&V
-2.12	0.007	н
	s [m] -144.69 -112.05 -39.75 -8.64 -5.56 -2.12	s [m] half-gap [m] -144.69 0.018 -112.05 0.014 -39.75 0.015 -8.64 0.011 -5.56 R = 0.015 -2.12 0.007

15 σ_x corresponds to the aperture of the **primary** collimators, **17** σ_x corresponds to the aperture of the **secondary** collimators.

Synchrotron radiation collimators

14

Synchrotron Radiation backgrounds

Power deposition from beam core for Z-mode

Blue is the reference closed orbit

Red is the average with possible soffsets due to misalignments

Heat load from beam halo synchrotron radiation

Maximum occupancy in subdetector/BX

н

ttbar

29

5.4

3

0.5

56

59

Inelastic Beam Gas scattering in the IR

			Ø=40	mm		Ø=	40mm			_
	beam	•	QC2	QC1	IP	QC1	QC2	QT1	QC3	Q
1	Ø=70mm				Ø=30mn	n 🖌				Ø=70n

Local pressure variations and beam-gas simulation

- The figure shows the pressure profile for the T-pole at 182.5 GeV, after a vacuum conditioning of 1 day at full current (5.4 mA)
- The blue curve assumes a higher pumping speed at the taper placed immediately before the QC2L2 final-focus quadrupole: it helps decrease the pressure bump near the IP

Loss map (left axis): blue: accounting for local pressure profile red: constant pressure profile

FCC

Beamstrahlung Dumps

Two 400 kW dumps are needed at each IP to accommodate the high power beamstrahlung

- High-power dumps needed to safely dispose of the high photon flux from IP
- Challenges for the dump design:

FUTURE

CIRCULAR COLLIDER

- High-power density (MeV photons) → challenging for absorber ^{^g/_× ^o} material and windows
- Activation (through photo-nuclear interactions)!
- Radiation environment around dump (ionizing dose to equipme radiation to electronics)

First considerations on radiation fields/power deposition, but more studies and R&D needed to develop a conceptual dump design and shielding – liquid metal considered as core material

High-power beam dumps - example <u>SPS beam dump</u>, designed for 300 kW in the most demanding scenario

Shielding needed for equipment and personnel protection for radiation environment

FN

19

FCC-ee IR Magnets

Ongoing work to develop IR quadrupoles with ~100 T/m

20

Significant progress on key aspects of the MDI design

- Mechanical model, including vertex and lumical integration, and assembly concept
- Backgrounds, halo beam collimators, IR beam losses
- Synchrotron radiation, SR collimators and masking, impact on top-up injection
- Heat Loads from wakefields, synchrotron radiation, and beam losses
- Beamstrahlung photon bump with first radiation levels

N 21

Summary

NFCC

- FCC-ee has highest luminosity at Z, W and H@240 GeV of all proposed factories
- Feasibility Study is under the Mid-Term review with a 'complete' design
 - Beam optics and beam physics, inc. collective effects, addressing major challenges
 - Describe high-cost technical systems, e.g. SRF, arc magnets, vacuum, ...
 - Layout identified to ensure complete civil / infrastructure cost estimates
 - Alternative options and R&D identified to further improve performance / cost
- Based on 60 years of experience with circular e⁺e⁻ colliders, some of which currently in operation, hence no need for a large demonstrator facility
 - Super KEKB and EIC will provide important information
 - R&D on components focused on improved performance, increased efficiency, industrialization, cost aspects sustainability and minimizing environmental impact
 - R&D timelines are consistent with construction in 2030's
- Very significant progress over the last two years!

22

Backup

- Full Silicon vertex detector + tracker;
- Very high granularity, CALICE-like calorimetry;
- Muon system
- Large coil outside calorimeter system;
- Possible optimization for
 - Improved momentum and energy resolutions
 - PID capabilities

- Si vertex detector;
- Ultra light drift chamber w. powerfull PID;
- Monolitic dual readout calorimeter;
- Muon system;

CDR

- Compact, light coil inside calorimeter;
- Possibly augmented by crystal ECAL in front of coil;

Noble Liquid ECAL based

- High granularity Noble Liquid ECAL as core;
 - PB+LAr (or denser W+LCr)
- Drift chamber (or Si) tracking;
- CALICE-like HCAL;
- Muon system;

٠

• Coil inside same cryostat as LAr, possibly outside ECAL.

Parameters

FCC-ee collider parameters as of June 3, 2023.								
Beam energy	[GeV]	45.6	80	120	182.5			
Layout		PA31-3.0						
# of IPs		4						
Circumference	[km]	90.658816						
Bend. radius of arc dipole	$[\mathrm{km}]$	9.936						
Energy loss / turn	[GeV]	0.0394	0.374	1.89	10.42			
SR power / beam	[MW]		5	0				
Beam current	[mA]	1270	137	26.7	4.9			
Colliding bunches / beam		15880	1780 440		60			
Colliding bunch population	$[10^{11}]$	1.51	1.45	1.15	1.55			
Hor. emittance at collision ε_x	[nm]	0.71	2.17	0.71	1.59			
Ver. emittance at collision ε_y	[pm]	1.4	2.2	1.4	1.6			
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.75	1.25	0.85	0.9			
Arc cell		Long	90/90	90,	/90			
Momentum compaction α_p	$[10^{-6}]$	28.6 7.4						
Arc sext families		7	14	46				
$\beta^*_{x/y}$	[mm]	110 / 0.7	220 / 1	240 / 1	1000 / 1.6			
Transverse tunes $Q_{x/y}$		218.158 / 222.200	218.186 / 222.220	398.192 / 398.358	398.148 / 398.182			
Chromaticities $Q'_{x/y}$		0 / +5	0 / +2	0 / 0	0 / 0			
Energy spread (SR/BS) σ_{δ}	Energy spread (SR/BS) σ_{δ} [%]		$0.070 \ / \ 0.109$	$0.104 \ / \ 0.143$	$0.160 \ / \ 0.192$			
Bunch length (SR/BS) σ_z [mm]		5.60 / 12.7	3.47 / 5.41	3.40 / 4.70	1.81 / 2.17			
RF voltage 400/800 MHz	[GV]	0.079 / 0	1.00 / 0	2.08 / 0	2.1 / 9.38			
Harm. number for 400 MHz		121200						
RF frequency (400 MHz)	MHz	400.786684						
Synchrotron tune Q_s		0.0288	0.081	0.032	0.091			
Long. damping time [turns]		1158	219	64 18.3				
RF acceptance [%]		1.05	1.15	1.8	2.9			
Energy acceptance (DA) [%]		± 1.0	± 1.0	± 1.6	-2.8/+2.5			
Beam crossing angle at IP $\pm \theta_x$	[mrad]	± 15						
Piwinski angle $(\theta_x \sigma_{z,BS})/\sigma_x^*$		21.7	3.7	5.4	0.82			
Crab waist ratio [%]		70	55	50	40			
Beam-beam $\xi_x/\xi_y{}^a$		$0.0023 \ / \ 0.096$	0.013 / 0.128	0.010 / 0.088	$0.073 \ / \ 0.134$			
Lifetime $(q + BS + lattice)$	[sec]	15000	4000	6000	6000			
Lifetime $(lum)^b$	[sec]	1340	970	840	730			
Luminosity / IP	$[10^{34}/{\rm cm^2 s}]$	140	20	5.0	1.25			
Luminosity / IP (CDR, 2 IP)	$[10^{34}/{\rm cm^2 s}]$	230	28	8.5	1.8			

- Parameters such as tunes, β^* , crab waist ratio are chosen to maximize the luminosity keeping the lifetime longer than 4000 sec without machine errors.
- The choice of the parameters including the sextupole settings still has a room for further optimization.
- Including injection/extraction/ collimation optics will need additional optimization.

^aincl. hourglass.

^bonly the energy acceptance is taken into account for the cross section

25

IR optics

FCC

- The **beam optics** are highly asymmetric between upstream/downstream due to crossing angle & suppression of the SR below 100 keV from about 400 m upstream to the IP.
- Crab waist/vertical chromaticity correction sextupoles are located at the dashed lines, they are superconducting.

26

High-level Requirements for the IR and MDI region

- One common IR for all energies, flexible design from 45.6 to 182.5 GeV with a constant detector field of 2 T
 - At Z pole: Luminosity ~ 10³⁶ cm⁻²s⁻¹ requires crab-waist scheme, nano-beams & large crossing angle. Top-up injection required with few percent of current drop. Bunch length is increased by 2.5 times due to beamstrahlung At **ttbar threshold**: synchrotron radiation, and beamstrahlung dominant effect for the lifetime
- Solenoid compensation scheme

Two anti-solenoids inside the detector are needed to compensate the detector field

- Cone angle of 100 mrad cone between accelerator/detector seems tight, trade-off probably needed Addressed with the implementation of the final focus quads & cryostat design, (e.g. operating conditions of the cryostat, thermal shielding thickness, etc.)
- Luminosity monitor @Z: absolute measurement to 10⁻⁴ with low angle Bhabhas Acceptance of the lumical, low material budget for the central vacuum chamber alignment and stabilization constraints
- Critical energy below 100 keV of the Synchrotron Radiation produced by the last bending magnets upstream the IR at tt_{bar}

Constraint to the FF optics, asymmetrical bendings

27

MDI alignment and monitoring

- Tight alignment requirements on IR magnets, Lumical, and BPMs especially
- Cryostats surround the FF quads, the BPMs.
- External / internal (to the cryostat) alignment and monitoring system
- Progress in the deformation monitoring system design with optical fibers placed in a helix shape. Two technologies are available:
 - SOFO (Surveillance d'Ouvrage par Fibre Optique)
 - In-line multiplexed and distributed FSI measurement (in development at CERN) https://iopscience.iop.org/article/10.1088/1361-6501/acc6e3

FCC-ee SRF Technology

FUTURE

CIRCULAR

COLLIDER

low R/Q, HOM damping, powered by 1 MW RF coupler and high efficiency klystron

moderate gradient and HOM damping requirements; 500 kW / cavity, allowing reuse of klystrons already installed for Z

ttbar, booster 5-cell 800 MHz, bulk Nb

high RF voltage and limited footprint thanks to multicell cavities and higher RF frequency; 200 kW/ cavity

Broad R&D collaborations on SRF

First attempt of HiPIMS* niobium coating on a 400 MHz Cu cavity

*High-power impulse magnetron sputtering

F. Peauger, O. Brunner