MAPS for large area sensors with nanosecond timing

Caterina Vernieri

Christos Bakalis, James E. Brau, Martin Breidenbach, Angelo Dragone, Alexandre Habib, Lorenzo Rota, Mirella Vassilev

October 12, 2023 Paestum, ECFA Workshop on e+e-

Stanford University U.S. DEPARTMENT OF ENERGY

Higgs physics as a driver for future detectors R&D

- Advancing HEP detectors to new regimes of sensitivity
- Building next-generation HEP detectors with novel materials & advanced techniques

Initial state	Physics goal	Detector	Re
e^+e^-	$h\rm ZZ~sub-\%$	Tracker	σ_{p_T}
			$\sigma_{p_{T}}$
		Calorimeter	4%
			EN
			EN
			sho
	$hb\overline{b}/hc\overline{c}$	Tracker	σ_{rq}
			5μ

Arxiv:2209.14111 Arxiv:2211.11084 DOE Basic Research Needs Study on Instrumentation

The goal of measuring Higgs properties with sub-% precision translates into ambitious requirements for detectors at e+e-

quirement

 $_{T}/p_{T}=0.2\%$ for $p_{T}<100~{\rm GeV}$ $p_T/p_T^2 = 2 \cdot 10^{-5} / \text{ GeV for } p_T > 100 \text{ GeV}$ particle flow jet resolution I cells 0.5×0.5 cm², HAD cells 1×1 cm² $\Lambda \sigma_E / E = 10\% / \sqrt{E} \oplus 1\%$ ower timing resolution 10 ps $h_{b} = 5 \oplus 15(p \sin \theta^{\frac{3}{2}})^{-1} \mu m$ m single hit resolution

Physics requirements for detectors

Precision challenges detectors

ZH process: Higgs recoil reconstructed from $Z \rightarrow \mu\mu$

- Drives requirement on charged track momentum and jet resolutions
- Sets need for high field magnets and high precision / low mass trackers

Particle Flow reconstruction

Higgs \rightarrow bb/cc decays: Flavor tagging & quark charge tagging at unprecedented level

- Drives requirement on charged track impact parameter resolution \rightarrow low mass trackers near IP
- <0.3% X0 per layer (ideally 0.1% X0) for vertex detector</p>
- \circ Sensors will have to be less than 75 μ m thick with at least e^+ 5 μ m hit resolution (17-25 μ m pitch)

arXiv:2003.01116

Physics requirements for detectors

Precision challenges detectors

ZH process: Higgs recoil reconstructed from $Z \rightarrow \mu\mu$

- Drives requirement on charged track momentum and jet resolutions
- Sets need for high field magnets and high precision / low mass trackers

Particle Flow reconstruction

Higgs \rightarrow bb/cc decays: Flavor tagging & quark charge tagging at unprecedented level

- Drives requirement on charged track impact parameter resolution \rightarrow low mass trackers near IP
- <0.3% X0 per layer (ideally 0.1% X0) for vertex detector</p>
- \circ Sensors will have to be less than 75 μ m thick with at least e^+ 5 μ m hit resolution (17-25 μ m pitch)

arXiv:2003.01116

Need new generation of ultra low mass vertex detectors with dedicated sensor designs

Sensors technology requirements for Vertex Detector

Several technologies are being studied to meet the physics performance

Sensor's contribution to the total material budget of vertex detector is 15-30%

pitch) and low power consumption

Physics driven requirements 2.8um $\sigma_{\rm s.p.}$ \rightarrow Air cooling \rightarrow r of Inner most layer 16mm beam-related background \ldots \sim radiation damage \sim

- Sensors will have to be less than 75 μ m thick with at least 3-5 μ m hit resolution (17-25 μ m)

Running constraints

Sensor specifications

Small pixel $\sim 16 \, \mu m$ Thinning to 50 µm low power 50 mW/cm^2 fast readout $\sim 1 \mu s$ radiation tolerance *≤*3.4 *Mrad/year* $\leq 6.2 \times 10^{12} n_{eq} / (cm^2 year)$

Future e+e- Colliders

Main Candidates, either linear C³/ILC/CLIC or circular FCC/CEPC

- Linear e+e- colliders are characterized by a very low duty cycle
- Power Pulsing can be an additional handle to reduce power consumption and cooling constraint
 - Factor of 100 power saving for FE analog power
- Tracking detectors don't need active cooling
 - Significantly reduction for the material budget

ILC Timing Structure

SLAC Caterina Vernieri · ECFA · October 12, 2023

Joint simulation/detector optimization effort with ILC groups **Common US R&D initiative for** future Higgs Factories 2306.13567

MAPS

Monolithic Active Pixel Sensors (MAPS) for high precision tracker and high granularity calorimetry

- Monolithic technologies have the potential for providing higher granularity, thinner, intelligent detectors at lower overall cost.
- Significantly lower material budget: sensors and readout electronics are integrated on the same chip
 - Eliminate the need for bump bonding : thinned to less than 100μ m
 - Smaller pixel size, not limited by bump bonding
 - Lower costs : implemented in standard commercial CMOS processes

Initial specifications for fast MAPS aka NAPA

Parameter	Value
Min. Threshold	$140 e^-$
Spatial resolution	$7~\mu{ m m}$
Pixel size	$25 \mathrm{~x} ~ 100 \ \mu \mathrm{m}^2$
Chip size	$10 \ge 10 \text{ cm}^2$
Chip thickness	$300~\mu{ m m}$
Timing resolution (pixel)	$\sim ns$
Total Ionizing Dose	100 kRads
Hit density / train	$1000 \text{ hits } / \text{ cm}^2$
Hits spatial distribution	Clusters
Power density	$20~{\rm mW}\ /\ {\rm cm}^2$

Table 1: Target specifications for 65 nm prototype.

Tracking performance

O(ns) timing capabilities as an additional handle to suppress beam induced backgrounds

Time distribution of hits per unit time and area: $\sim 4.4 \cdot 10^{-3}$ hits/(ns·mm²) $\simeq 0.03$ hits/mm² /BX in the 1st layer of the vertex barrel SiD-like detector for ILC/C³

D. Ntounis talk on beam background simulations

Caterina Vernieri · ECFA · October 12, 2023 SLAC

Parameter	Value
Time resolution	1 ns-rms
Spatial Resolution	7 µm
Expected charge from a MIP	500 – 800 e/h
Minimum Threshold	200 e-
Noise	< 30 e-rms
Power density	< 20 mW/cm ²
Maximum particle rate	1000 hits/cm ²

7

Digital E-Calorimeter

GEANT4 simulations of Transverse distribution of two 10 GeV showers separated by one cm

Pixel amplitudes (analog) in the ILC 13 mm² TDR pixel design

The design of the digital MAPS applied to the ECal exceeds the physics performance required for the linear collider as specified in the ILC TDR

Clusters in the first 5.4 radiation lengths in the new SiD digital MAPS of 2500 μ m² pixel

Target Specs vs. State of the Art

Chip name	Technology	Pixel pitch [µm]	Pixel s
Target Specification	?	25 x 100	Sq /
ALPIDE [2][3]	Tower 180 nm	28	Squ
FastPix ^{[4][5]}	Tower 180 nm	10 - 20	Hexa
DPTS ^[6]	Tower 65 nm	15	Squ
Cactus ^[7]	LF 150 nm	1000	Squ
MiniCactus ^[8]	LF 150 nm	1000	Squ
Monolith ^{[9][10]}	IHP SiGe 130 nm	100	Hexa

We decided to go with the Tower 65nm technology, which has been optimized by CERN WP1.2 to have low sensor capacitance allowing very good performance with low power consumption. + it has the possibility of a wafer-scale stitched sensor + it has been proven to be radiation tolerant

Target Specs vs. State of the Art

capacitance allowing very good performance with low power consumption. + it has the possibility of a wafer-scale stitched sensor + it has been proven to be radiation tolerant

- We decided to go with the Tower 65nm technology, which has been optimized by CERN WP1.2 to have low sensor

NAPA_p1: NAnosecond Pixel for large Area sensors – Prototype 1

First prototype in TJ 65nm

- The prototype design submitted with a total area 5 mm x 5 mm and a pixel of 25 μ m 25 μ m, to serve as a baseline for sensor and pixel performance.
- Design motivation → simple architecture with minimum global signals to reduce failure risk in a large area implementation.
- Thanks to CERN WP1.2 effort on sensor optimization in TowerSemi 180 nm and 65 nm technologies
 - → C_{sensor} of 2-3 fF is achievable while maintaining high collection efficiency

Layout of MAPS SLAC prototype for WP1.2 shared submission

10

Timing Limits for a Complete Detection Chain

~1 ns-rms time resolution

•

Accounting for residual Time Walk after correction, and other non-idealities, it is reasonable to aim for

11

Summary of NAPA-p1 Performance

	Specification	Simulated NA
Time resolution	1 ns-rms	0.4 ns-rms
Spatial Resolution	7 µm	7 µm
Noise	< 30 e-rms	13 e-rms
Minimum Threshold	200 e-	~ 80 e-
Average Power density	< 20 mW/cm ²	0.1 mW/cm ² for 1% duty cucle

Acknowledgement: to CERN WP 1.2 for the excellent cooperation: NAPA-p1 uses the pixel masked developed and optimized by CERN, and was fabricated in a MLR led by CERN

Test Setup for NAPA-p1

Chips were received in September 2023

- A custom carrier was designed at SLAC for the NAPA-p1 chip providing all analog references
- The chip was wire-bonded at SLAC
- The carrier boards connects to a digital board containing an FPGA and several DAC's

Carrie Board

Napa-p1

Preliminary Characterization Results

Chip characterization is on going

Very Preliminary Characterization Results Obtained a Few Days Ago Thanks to: Xavier Defay, Christos Bakalis, Namit Mishra, Lorenzo Rota and others

Towards a Large Sensor

The main limitation comes from large scale power distribution rather than cooling constraints

Potential solutions to address the power distribution over a large scale:

- Decrease power density → Physics requirement are for a pixel of 25 µm x 100 µm. Our initial study shows that a pixel of 25 µm x 50 µm gives the best optimization for Performance/Power density
- Reduce $R_{pix} \rightarrow$ Top metal, low resistivity power grid
- Keep power constant
 → Switch from a single ended to a differential comparator
- Reduce the column length → Target sensor of 5 cm x 20 cm instead of 10 cm x 10 cm
- → NAPA-p2 design has started to tackle these challenges

Conclusions and next steps

First MAPS prototype targeting e⁺e⁻ spec is being tested

- MAPS technology is being investigated for applications at future e⁺e⁻ colliders for both tracking and calorimetry applications
- Simulations of NAPA-p1 show that it is possible to achieve a time resolution 1 ns-rms with reasonably low power consumption of ~100 mW/cm² x Duty Cycle (at LC < 1%)
- First characterization of Napa-p1 is promising more ongoing
 - It will serve as a pixel proof of concept.
- Design of NAPA-p2 has started to tackle large sensor challenges
 - NAPA-p2 will serve as a system proof of concept.

Layout of MAPS SLAC prototype for WP1.2 shared submission

Design Approach

For a constant SNR and Q_{in} \rightarrow *Power* $\propto (C_{sensor})^m$ *with* $2 \leq m \leq 4$ as shown in [11]

Aim for smallest possible sensor capacitance \rightarrow

- - \rightarrow C_{sensor} of 2-3 fF is achievable while maintaining high collection efficiency

Jitter
$$\propto \frac{Cload}{\sqrt[n]{I}}$$
 with $1 \le n \le 2 \rightarrow$ Keep C_{load} to a minim

Thanks to CERN WP1.2 effort on sensor optimization in TowerSemi 180 nm and 65 nm technologies ^{[12] [13]}

Going Towards a Large Sensor \rightarrow

 $\Delta V = I_{pix} \times R_{Pix} + 2 \times I_{Pix} \times R_{Pix} + 3I_{Pix} \times R_{Pix} + \dots + N \times I_{Pix} \times R_{Pix}$ $\Delta V = I_{Pix} \times R_{Pix} (1 + 2 + 3 + \dots + N)$ $\Delta V = I_{Pix} \times R_{Pix} \times \frac{N(N+1)}{2}$

Assuming : I_{pix} = 600 nA and R_{pix} = 300 m Ω

Assuming pixel of 25 $_{\mu}$ m x 25 $_{\mu}$ m

A column of 10 cm would have 4000 pixels

Double sided powering

 \rightarrow max drop length = 2000 pixels

VDD-GND goes from 1.2 V near the power pads

down to around 480 mV after 2000 pixels

The main limitation comes from large scale power distribution rather than cooling constraints

After 10³ pixels (reticle, 2.5 cm), $V_{drop} \approx 0.1 V$ After 4 x 10³ pixels (sensor, 10cm), $V_{drop} = 1.5V$!

Simulation of Jitter and ENC as a Function of C_{sensor}

These simulations are with a nominal pixel current of 600 nA \rightarrow <Power density> = 115 mW/cm² x duty cycle For e+e- machines such as ILC and C³, duty cycle is expected < 1%

Simulation Results : Jitter and Time Walk

Jitter

Not negligible and must be corrected (in pixel? In balcony? Offline? TBD)

Sensors technology overview

Several possible choices for the VTX detector:

- Monolithic Active Pixels (MAPS)
 - CMOS Pixel Sensors (CPS)
 - Fully Depleted on High Resistivity Substrate (DNwel sensing)
 - Fully Depleted SOI technologies •
- Depleted Field Effect Transistors (DEPFET)
- Fine pixel Charged Coupled Devices (CCD)
- 3D integration
- The general landscape is also changing rapidly with advances in microelectronics

CMOS (CPS)

DEPFET

Caterina Vernieri

EFCA - October 2023

Fine pixel CCD

Detectors design at lepton colliders

•

- Particle Flow reconstruction \rightarrow plays a big part in many designs •
- SiD like detector Compact all silicon detector •
- ILD like detector Larger detector with Silicon+TPC tracker •
 - Larger detector. Simulation and design work active in Europe / Japan ullet
 - IDEA detector Using dual readout calorimeter, under study at CEPC/FCC-ee

Caterina Vernieri

EFCA - October 2023

Detector designs at e+e- colliders are converging to very similar strategies

23

ALPIDE

- With the current tracker upgrade ALICE redefined the new state-of-the art in CMOS MAPS technology and its applications in HEP
- ALice Plxel DEtector (ALPIDE) uses CMOS Pixel sensor used in imaging process
 - full CMOS circuitry within active area
 - Sensor thickness = $20-40 \ \mu m \ (0.02-0.04\% \ X0)$
 - 5µm spatial resolution
 - radiation hard to 10^{13} 1 MeV n_{eq}

The used technology offers further opportunities: smaller feature size, **bending** that directly impact the key measurements that highly rely on precise vertexing and low material budget

EFCA - October 2023

Towards ultra low mass trackers

Caterina Vernieri

EFCA - October 2023

- Sensor's contribution to the total material budget is 15-30%
 - cables + cooling + support make up most of the detector mass
 - Challenges (beam backgrounds, cooling, material budget) needs to be addressed by emerging R&D's:
 - Reduce impact of mechanical supports, services, overlap of modules/ladders
 - Beam related background suppression \Rightarrow evolve time stamping toward a few 100 ns (bunch-tagging)
- At linear colliders the baseline consists in air-cooling which is expected to be able to extract the total power dissipation of the vertex detector (< 40 mW/cm²)
 - more specific developments are also being pursued as micro-channel cooling for DEPFET

25

ALICE: Bent MAPS for Run 4

Recent ultra-thin wafer-scale silicon technologies allow: Sensor thickness = 20-40 µm - 0.02-0.04% X0 Sensors arranged with a perfectly cylindrical shape a sensors thinned to ~30µm can be curved to a radius of 10-20mm (ALICE-PUBLIC-2018-013) Industrial stitching & curved CPS along goals of ALICE-ITS3, possibly with 65 nm process

Caterina Vernieri

EFCA - October 2023

Bending Si wafers + circuits is possible

Particle Flow Calorimeters

CALICE collaboration: development and study of finely segmented and imaging calorimeters

- Precise reconstruction of each particle within the jet
- •
- CALICE R&D inspired CMS high granularity solution HGCAL Common test beams with the AHCAL prototype

Issues: overlap between showers, complicated topology, separate physics event particles from beam-induced background • New ideas/technologies being explored: high precision (ps) timing calorimeters and new sensors ideas (ex: MAPS, LGADs)

SiD

- Compact, cost constrained detector
 - 5 T solenoid B-field with with R_{ECAL} =1.27 m
 - All silicon pixel vertex + tracking system •
 - Highly granular Si calorimeter optimized for PFLOW •
- Pixel Vertex detector
 - 1 kGy and 10¹¹ n_{eq} /cm² per year
 - **Pixel hit resolution** better then 5 μ m in barrel
 - Better if charge sharing is used
 - Less than **0.3% X₀** per pixel layer ٠
 - air cooling \rightarrow low-mass sensor
 - Single bunch time resolution •
 - Low capacitance and high S/N allows for acceptable power dissipation for single-crossing time resolution (~ 300-700 ns)
- Outer pixel Tracker:
 - 0.1-0.15% X₀ in the central region

Caterina Vernieri

EFCA - October 2023

