FCC-ee Detector Full Simulation Implementation

Alvaro Tolosa-Delgado (CERN)

Second ECFA Workshop, Paestum (Italy) Oct. 11th, 2023

- Software ecosystem
- Status of detector implementation
- Detector studies
 - Status of full simulation
 - Status of reconstruction and Analysis
- Summary

• Key4hep software stack, see J. Carceller talk tomorrow

- Key4hep software stack
- Data format is EDM4hep
- Detector Geometry built by DD4hep
 - Central repository for geometry: k4geo
 - The geometry is always fed to the simulation as a DD4hep detector description
 - CAD designs are translated by DD4hep before running the simulation

Event data Detector Geometry

- Key4hep software stack
- Data format is EDM4hep
- Detector Geometry built by DD4hep
 - Central repository for geometry: k4geo
- Actions are a Gaudi service/tool/alg

Generator	Ž
	Event data Detector Geometr

- Key4hep software stack
- Data format is EDM4hep
- Detector Geometry built by DD4hep
 - Central repository for geometry: k4geo
- Actions are a Gaudi service/tool/alg

- Key4hep software stack
- Data format is EDM4hep
- Detector Geometry built by DD4hep
 - > Central repository for geometry: k4geo
- Actions are a Gaudi service/tool/alg
 - > Several repositories for reconstruction

- Key4hep software stack
- Data format is EDM4hep
- Detector Geometry built by DD4hep
 - Central repository for geometry: k4geo
- Actions are a Gaudi service/tool/alg
 - > Several repositories for reconstruction
- Dedicated framework for analysis

Status of detector implementation

• Three main detector concepts:

Status of detector implementation

• Three main detector concepts:

- Subdetectors can be interchanged, e. g.
 - IDEA and ALLEGRO share inner subdetectors
 - Beam pipe is common to all

Status of detector implementation

• Three main detector concepts:

ALLEGRO

- Subdetectors can be interchanged, e. g.
 - IDEA and ALLEGRO share inner subdetectors
 - Beam pipe is common to all
- Many people behind each subdetector

FCCee detector fullsim implementation alvaro.tolosa.delgado@cern.ch

Beam pipe

A. Ciarma

- Beam pipe is common to all detectors
 - DD4hep implementation based on CAD design [link]
 - Study of shielding efficiency is ongoing

3D view screening solenoid QC1 Lumical QC1 100 mrad - 15 25 25

- Lumical is a W-Si detector coming from ILD
 - Upgrades are ongoing (J. Jallberg, M. Dam)
- See M. Boscolo talk for further details about the mechanical design

CLIC Like Detector, CLD

• Full simulation and reconstructions is available

CLIC Like Detector, CLD

- Full simulation and reconstructions is available
- The main components are:
 - Silicon-based Vertex and Tracker
 - > Highly granular calorimeters
 - Coil, surrounds calorimeter systems

CLIC Like Detector, CLD

- Full simulation and reconstructions is available
- The main components are:
 - Silicon-based Vertex and Tracker
 - > Highly granular calorimeters
 - Coil, surrounds calorimeter systems
- More details in A. Sailer presentation tomorrow

- There are plans to use CLD as a test bed for full simulation studies
 - Various tracking algorithms and layout studies (see L. Reichenbach presentation)
 - Optimization of the tracker geometry driven by the impact on tracking and vertexing resolution and flavor tagging (G. Sadowski, Z. El Bitar, J. Andrea)

- There are plans to use CLD as a test bed for full simulation studies
 - Various tracking algorithms and layout studies (see L. Reichenbach presentation)
 - Optimization of the tracker geometry driven by the impact on tracking and vertexing resolution and flavor tagging (G. Sadowski, Z. El Bitar, J. Andrea)
- Version of CLD with ALLEGRO ECAL, see S. Sasikumar presentation
 - Current aim is to study particle flow based on Marlin Pandora PFA
 - Pandora requires information about the material properties of the calorimeter, e.g., radiation length, interaction length, and dimension of the reconstruction algorithm
 - The end goal is to develop a native version of Pandora in key4hep

CLD option with ARC

- New option of CLD to accommodate ARC subdetector (A. Tolosa-Delgado) [link]
- Array of RICH Cells (ARC) is a Cerenkov-based detector
- RICH detectors are suitable for particle identification at high momentum
- Work in geometry optimization, digitization and reconstruction algorithms is ongoing

FCCee detector fullsim implementation alvaro.tolosa.delgado@cern.ch

- A lot of activity ongoing, many subdetectors are ready or well advanced
 - Silicon-based vertex detector
 - Short-drift, ultra-light wire chamber
 - Dual-readout calorimeter
 - Thin and light solenoid coil inside the calorimeter system

FCCee detector fullsim implementation alvaro.tolosa.delgado@cern.ch

IDEA. Vertex Detector

- Detector description available from k4geo
- Realistic description of sensors
- Proxy volumes for complex structures (e.g. truss)
- Some support structures are built from CAD design directly
- Lower limit of material budget
- Details about the design will be given tomorrow by F. Palla
- Digitization algorithm in key4hep is ready, reconstruction is still based on Marlin & LCIO data format
- Silicon wrapper subdetector, between the ECAL and Drift chamber, is built by the same detector-type as the Vertex

IDEA. Drift Chamber

- Ultra-light Drift Chamber, 1-5% X₀
- Tracking efficiency close to 100%
- Angular coverage of 97% 4π
- Geometry description in DD4hep is available, being fine-tuned
- Elemental volume results from intersection of a hyperboloid with rotated tube segment
- F. M. Procacci will overview the status of this subdetector on a dedicated talk later today, together with the last updates on mechanical simulation studies.

IDEA. Drift Chamber. PID capabilities

- Smearing the hit positions in local coordinate is ready as part of the digitization process
- Reconstruction algorithm is under development
- Improved PID by cluster-counting technique [arXiv]
 - Energy loss, separation ~2.5%
 - Plus cluster counting ~4.2%
- See W. Elmetenawee presentation for further details about the cluster counting technique and the derived PID based on it

FCCee detector fullsim implementation

alvaro.tolosa.delgado@cern.ch

IDEA. Fiber-based Dual Readout Calorimeter

- Full-scale 4π projective geometry
- Detector description ready, PR292 in k4geo
- Dedicated fast simulation for optical photons transport
- External library that reproduce the SiPM sensor response already included in key4hep stack
- Preliminary results of the full workflow as standalone
- Work is ongoing
 - "Bucatini" module has been tested at SPS [arXiv], to be implemented in DD4hep
 - Advanced reconstruction using ML, see A. D'Onofrio presentation

S. H. Ko, S. Kim

IDEA. Crystal-based Dual Readout Calorimeter

- Crystal-based calorimeter would provide better EM resolution than fiberbased plus longitudinal segmentation [JINST 2020]
- Detector description ready in DD4hep
- Currently working on digitization and reconstruction
- R&D working on new materials [cds]

High granularity Fiber-based Hybrid crystal Si/W ECAL and dual-readout and dual-readout scintillator based HCAL calorimeter calorimeter N. of longitudinal layers > 405 1 $25-100 \text{ mm}^2$ $100 \, \text{mm}^2$ ECAL cell cross-section $2-144 \text{ mm}^2$ 400-2500 mm² $100-900 \text{ mm}^2$ HCAL cell cross-section $10-15\%/\sqrt{E}$ $\approx 3\%/\sqrt{E}$ $15-25\%/\sqrt{E}$ EM energy resolution $45-55\%/\sqrt{E}$ $25-30\%/\sqrt{E}$ $\approx 25-30\%/\sqrt{E}$ HAD energy resolution

From Geant4 standalone study [JINST 2022]

14

W. Chung

FCCee detector fullsim implementation alvaro.tolosa.delgado@cern.ch

IDEA. Muon detectors

- Based on uRWELL, a novel single amplification stage Micro-Pattern Gas Detector
- Each uRWELL chamber is 50 x 50 cm²
- Chambers are grouped in 3 layers of barrel* and endcap**
- The layers are placed between layers of the iron yoke that closes the magnetic field
- Simple geometry ready, implementation based on single chambers it is on the way
- Current work focus on digitization, which simulates the efficiency, fake rate (noise) and resolution according to the R&D results

A Lepton coLlider Experiment with highly GRanular calorimetry Read-Out

- Vertex detector and drift chamber are adapted from IDEA ones
- Noble liquid-based ECAL
- TileCal as HCAL
- Solenoid between the ECAL and HCAL

ALLEGRO. Noble liquid-based ECAL

- Implementation of the barrel is ready, and there is a new team working on the endcap implementation with a turbine-like geometry
- Optimization of granularity is ongoing
- New cell segmentation readout in theta is ready (G. Marchiori)
- TopoClustering algorithm [arXiv] is available for the new segmentation in theta
- Noise generation algorithms have to be updated for this new segmentation
- Performance studies to assess the position and energy resolution are being carried out

Endcap geometry, being implemented by E. Varnes and Prof. J. P. Rutherfoord (University of Arizona (US))

ALLEGRO. TileCal

- Implementation of HCAL barrel is ready, endcap geometry is being optimized (J. Faltova)
- Combined ECAL+HCAL barrels now under study
 - Optimization of material/geometry
 - Implemented benchmark calibration to calibrate energy deposits to hadronic scale (at the cell level)
 - Sliding window (SW) clustering algorithm works for ECAL+HCAL
 - TopoClustering algorithm works for stand alone ECAL/HCAL, and it is being developed to work with the combination of both
- Ongoing effort for calibration based on MVA (NN) point to better performance (energy resolution and energy response)
- The next steps include as well performance studies, which measure the impact of electronics noise, jet energy scale and resolution, H/W/Z mass resolution

M. Mlynarikova

Ancillary steps in the detector fullsim workflow

- In order to test robustness of the simulation studies and their conclusions, more realistic conditions have to be implemented:
 - Overlay of full simulation output with background from the machine, see
 D. Ntounis presentation about background production
 - Some subdetectors like the IDEA Drift Chamber require more advance studies than simple detector occupancy estimation
 - Regarding the interaction point,
 - some features like Lorentz boost due to the crossing angle and EM field map are already implemented,
 - other features like vertex position offset and its smearing and beam energy spread have to be implemented in key4hep
- We need to validate our simulation (detector description, physics, etc) with test beam data

- Detector description is centralized in k4geo repository [link]
- A lot of activity ongoing, from detector description to new algorithms for digitization, reconstruction and performance studies
- New software developments driven by detector requirements, like new detector segmentations or implementation of fast simulation for optical photon transport
- Contributions are warmly welcomed
- We are willing to provide support (FCC forum, github, mail)

Backup slides

- GDML is a file format intended for the interchange of geometries [link]
- Geant4, ROOT and DD4hep can read/write geometries in GDML formats
- DD4hep provides the tool geoConverted, which can convert DD4hep detector description to GDML

geoConverter -input mydetector.xml -o mydetector.gdml -compact2gdml

- Further details can be found in the section 2.15.2 of DD4hep the manual [link]
- That GDML file can be fed to a Geant4 stand alone application, as it is shown in a dedicated example [link] found under the directory

\$G4INSTALL/share/Geant4/examples/extended/geometry/vecGeomNavigation/