Towards an Estimation of the fluxes in highly granular calorimeters

V.Boudry, K. Hassouna*, L. Portales

Institut Polytechnique de Paris * IPP PSEI and U. of Hawaii at Manoa

2nd ECFA WS on HET factories

Paestum, 11/10/2023

Rationale

ILD high granularity calorimeters

- Designed for ILC
 - Power pulsing, low occupancy
- Marginaly adapted for CLIC and CLD
 - Physics : number of layers
- Partially adapted for CEPC
 - Lower granularity
- Needs strong adaptation for EW physics and continuous operation
 - Rates, Heat, Electronics

ECAL: 30 layers

- SiW-ECAL": 0.5×0.5 cm³ Si cells
- ScECAL: 0.5×5 cm² Scint strips

10-100M channels

HCAL: 48 layers

- AHCAL: 3×3 cm³ scint. cells
- ScECAL: 1×1 cm² RPC cells

10–70M channels

Vincent.Boudry@in2p3.fr

Revisiting the HG calorimeters for ee-Colliders

Large panel of running conditions

- 90GeV × 10⁷ fb × 5·10³⁶ cm⁻² s⁻¹ (qq × 20000 ILC @ 250)
- 150 GeV (WW) + 250 GeV (ZH)+ 280 GeV (tt) ~10⁴ fb × 5·10³⁵ cm⁻² s⁻¹ (qq × 5–10 ILC @ 250)

Are the current hypothesis viable?

- Occupancy,
 DAQ,
 Cooling
- 1 detector fit-all ?
 - What are the limits :
 - power vs Granularity vs active cooling ?

New electronics (DRD6):

- TSMC 130 nm vs AMS 130 nm (or 65nm)
- Running mode (continuous, trigger-less)
 - Trigger for other detectors ?

Calorimeter Fluxes from Full Simulations

Quantities useful for self-triggering, low occupacy, Front-End electronics & Design

- Number of hits/s per ASICs
 - → Power (Energy per conversion)
 - ➡ Memory size
- Distribution of Energy & Time
 - ➡ Dynamic ranges
 - → Power per conversion (Wilkinson ADCs)
 - ➡ Double hits
- Data output
 - → Data Flux per readout partition (DAQ)
 - → DAQ scheme (Calo trigger to other parts ?)

Other quantities

- Deposited energies
 - ➡ Radiation

Vincent.Boudry@in2p3.fr

Processes to Fluxes

Vincent.Boudry@in2p3.fr

Primary histograms: per cell distributions

Segmentation by "Logical Geometry" C:M:S:T:L:I:J

- Physics: Group of uniform (rates) regions ($\sim \cos\theta$)
- Technical: Readout & Cooling Partition (ASIC, SLAB, Tower, Module)

Vincent.Boudry@in2p3.fr

Calorimeter Fluxes | 2nd ECFA WS on HET factories | Paestum, 11/10/2023

(Individual layers)

Symmetrical : staves (ϕ), Forward–Backward ($\pm \theta$)

_

_

Logical Geometry : towers & staves

x:y:T {C==30 && log10(E)<-6}

Vincent.Boudry@in2p3.fr

Logical Geometry (ECAL)

Vincent.Boudry@in2p3.fr

Cross-check : muons

2D time Histogram of SiECALBarrel of collected modules for layers 0:9

2D time Histogram of SiECALBarrel of collected modules for layers 0:9 SiECALBarrel_no_function_time_modules_layers_0:\$ 20 time Entries 500 Mean x 1.95 t vs Module, layers 0–9 Mean y 7.598 18 Std Dev x 1.346 Std Dev y 1.143 16 0.8 14 0.6 12 0.4 10 0.2 6 1.5 3.5 4.5 0.5 2.5 5 Modules 2D time Histogram of SiECALBarrel of collected modules for layers 20:29 SiECALBarrel_no_function_time_modules_layers_20:29 20 time Entries 500 1.98 Mean x t vs Module, layers 20–29 Mean y 7.899 18 Std Dev x 1.331 Std Dev y 1.077

Vincent.Boudry@in2p3.fr

System low energy & #hit responses raw energies (no digitization)

11/19

Logical Geometry (HCAL BARRELS)

Code K. Hassouna	<pre>system_limits = {"ECALBarrel" : (8, 5, 5, 30) , "EndCaps" : (4, "0-6", 5, 5 #selection format "S:M:T:L" conditions => "*:*:2:0-4,5-10" means no select #The keys of the dictionary are the system names. Each key has a value comp # The first list has the collections' names. # The second one has the selections we impose on the histograms made in the # The third list has 4 lists each with 2 arguments. Each list has the bin r # The fourth list has the energy threshold that we use in the Nhits histogram.</pre>	00)} .on on M, S, 1 histo per 2 towe bosed of 4 lists. e order given above. number (the first argument) and ram.	r , 1 for layer 0 to 5, and o the maximum of the range of	ne for the his
Python code	# System Xollwctiona "SiECalEndcap": (["ECalEndcapSiHitsEven", "ECalEndcapSiHitsOdd"],	Stave MOdules [["*"],["*"],	Towers ["0","1:2","3:5","6:8"],	Layer ["0:9
Production of Primary histograms	"SiECALBarrel": (["ECalBarrelSiHitsEven", "ECalBarrelSiHitsOdd"], "SiECalRing": (["EcalEndcapRingCollection"], "ScECalEndcap": (["ECalEndcapScHitsEven", "ECalEndcapScHitsOdd"], "ScECALBarrel": (["ECalBarrelScHitsEven", "ECalBarrelScHitsOdd"],	[["*"],["1","2","3","4","5"], [["*"],["*"], [["*"],["*"], [["*"],["1","2","3","4","5"],	["*"], ["*"], ["0","1:2","3:5","6:8"], ["*"],	["0:9 ["0:9 ["0:9 ["0:9
 LcioReader from pyLCIO 	"RPCHCalEndcap": (["HCalEndcapRPCHITS"], "RPCHCalBarrel": (["HCalBarrelRPCHits"], "RPCHCalECRing": (["FcalEndcapRPingCollection"].	[["*"],["*"], [["*"],["*"], [["*"],["*"].	["0:3","4:/","8:11","12:15"] ["*"], ["*"].	, ["0:] ["0:] ["*"]
 Mapping & Selection 	"ScHCalEndcap": (["HcalEndcapsCollection"], "ScHCalBarrel": (["HcalEndcapsCollection"], "ScHCalECRing": (["EcalEndcapRingCollection"],]	[["*"], ["*"], [["*"], ["*"], [["*"], ["*"],	["0:3","4:7","8:11","12:15"] ["*"], ["*"],	, ["0:] ["0:] ["*"]
Cell_id decoding [J. Kunath]	highE bin/max #hits bin/max EThr Split Func:ranges			
Highly configurable	100, 0.03], [100, 35]], [[0.0001]], {}, 100, 0.03], [100, 35]], [[0.0001]], {},	- <mark>1</mark> g/data/ILC	C/ILD/FCC-ee/HistoExamples/qqH240/histogr CALBarrel;1	am
 ROOT histograms 	100, 0.03], [100, 35]], [[0.0001]], {}, 100, 0.03], [100, 35]], [[0.0003]], {},		alRing;1 HCalECRing;1	
System and histo type hierarchie	100, 0.03], [100, 35]], [[0.0002]], {}, 100, 3e-5], [100, 35]], [[3e-7]], {}, 100, 3e-5], [100, 35]], [[3e-7]], {complex_sad:["0:79", "80:1 100, 0.03], [100, 35]], [[0.0001]], {}).	59", "160:234"]}	HCalEndcap;1 CalEndcap;1 ALBarrel;1 HCalBarrel:1	
 Auto-rescalable (high E) 	100, 0.03], [100, 35]], [[0.0001]], {}), 100, 0.03], [100, 35]], [[0.0003]], {complex_happy:["0:29", "	30:59", "60:76"]]	alEndcap;1 CalECRing;1	
Secondary histograms	100, 0.03], [100, 35]], [[0.0001]], {})	Ė- - ∰ ScHc ‡ ∰ nc	alBarrel;1 function;1	
- Scaling : e.g. power, datasize = $f(\#h)$	its, Energy)		Itime;1 Itime_peaks;1 Iower_scale_energy;1 I ScHcalBarrel_L0:15_lower_scale;1	
 2D histograms 			ScHcalBarrel_L16:31_lower_scale;1 ScHcalBarrel_L32:48_lower_scale;1 upper_scale_energy;1 #Nhits;1	
Summing-up of processes & backgro	und	±- ⊜ co _	pmplex_happy;1 itime;1	
 from table 			ume_peaks;1 lower_scale_energy;1 upper_scale_energy;1 #Nhits:1	

Vincent.Boudry@in2p3.fr

Processes & Configurations

Mininum bias

Leading processes (at all angles)

Jrooo	<u> </u>	bloo
	0000.	 DIGO

- All

- ee → qq
- ee $\rightarrow \mu\mu$, $\tau\tau$
- ee → ee (⊃ Bhabha)
- $\gamma\gamma \rightarrow VV$
- Machine background (ee pairs)
- E_{CM} ≥ 160 GeV
 - ee \rightarrow WW
 - (E_{CM}≥ 240 GeV)
 - ee \rightarrow HZ
- (E_{CM} ≥ 360 GeV)

ee → tt

• Worse case (scans)

Config	#IP	E_{Beam}	#BX	£ [10 ³⁴ /cm²/s]	ΔT [µs]	Freq[Hz]	√s [GeV]
FCC-Z2	2	45,6	12000	180,0	0,025		91,2
FCC-Z4	4	45,6	15880	140,0	0,019		91,2
FCC-W	4	81,3	688	21,4	0,442		162,5
FCC-ZH	4	120,0	260	6,9	1,169		240,0
FCC-tt	4	182,5	40	1,2	7,600		365,0
ILC250 [1]	1	125,0	1312	1,4	0,554	5,0	250,0
ILC500	1	250,0	1312	1,8	0,554	5,0	500,0
ILC1000	1	500,0	2450	4,9	0,366	5,0	1000,0
CLIC380	1	160,0				10,0	380,0
ILC-GZ	1	45,6				5,0	91,2
ILC250-HL CEPC	1	125,0	2625	2,7	0,366	5,0	250,0

ILC from: P. Bambade et al., The International Linear Collider: A Global Project, arXiv:1903.01629 [Hep-Ex, Physics:Hep-Ph, Physics:Physics]. (2019). FCC from: Tor Raubenheimer, FCC Week June 2023

Vincent.Boudry@in2p3.fr

C3

÷

ILD simulation

ILD_I5_v02 with crossing angle = 14mrad.

on going...

Vincen

Process	91 GeV	162 GeV	240 GeV	365 GeV
	Gen/Sim/Hist	Gen/Sim/Hist	Gen/Sim/Hist	Gen/Sim/Hist
Machine background [1]	100 BX/NA/NA	NA	NA	100 BX/NA/NA
ee → eeγ	NA	NA	NA	NA
$ee \rightarrow ee\gamma\gamma (\gamma \rightarrow \vee)$	NA	NA	NA	NA
ee → ee, Mee < 30 (bhabha)	10k/10k/NA	10k/10k/NA	10k/10k/NA	10/k/2.4k/NA
ee \rightarrow ee, 150> Mee > 30	10k/10k/NA	10k/10k/NA	10k/4414/NA	10k/1745/NA
ee → (Z/Gamma*) → qq	10k/7018/NA	10k/10k/NA	10k/10k/NA	10k/9847/NA
ee → (Z/Gamma*) → ℓℓ (π, μμ)	10k/10k/NA	10k/9583/NA	10k/9678/NA	10k/9999/NA
$ee \rightarrow WW (\rightarrow qqqq, qq\ell\ell, \ell\ell\ell\ell)$		10k/9934/NA	10k/10k/NA	10k/9999/NA
ee → ZH → qqH			10k/10k/NA	
ee → tt				10k/9999/NA

[1] Incoherent pair production from Andrea Ciarma; 13/12/2022, same data as D. Jeans

Background sources for the nominal 500 GeV	Source	#particles per bunch	< E > (GeV)
beam parameters.	Disrupted primary beam	2×10^{10}	244
	Bremstrahlung photons	$2.5 imes 10^{10}$	244
	e ⁺ e ⁻ pairs from beam-beam inter- actions	75k	2.5
	Radiative Bhabhas	320k	195
	$\gamma \gamma \rightarrow hadrons/muons$	0.5 events/1.3 events	-

T. Behnke, et al.

The International Linear Collider Technical Design Report - Volume 4: Detectors, arXiv:1306.6329 [Physics]. (2013)

bries | Paestum, 11/10/2023

Status & Perspectives

Simulation:

- Simulate backgrounds in ILD at 90 and 160 GeV
- Include digitization (esp. RPCs)
- Check differences ILD vs ILD' for calos on key process (influence of trackers)

Histograms

- Produce the primary histograms (on-going)
- Sum to get first estimations of rates & errors

Checks:

- Check the statistics vs angular distribution for processes
 - Rate from single particles × population ("fast sim")

Instrumentation:

- Feed in realistic electronics numbers
 - → secondary histogramss : Power, bits per hit
- Test electronics hypothesis
 - ADC types, cell grouping, DAQ, ...

Code (later)

- Adapt to key4hep
 - Digitization and Performance
- Make it "generic" for all detector types
 - Trackers, CLD, IDEA, ALLEGRO

Vincent.Boudry@in2p3.fr

Extras

Vincent.Boudry@in2p3.fr

ee Higgs factories: configs & backgrounds

Running mode		Z	W	ZH	tī
Number of IPs	2	4	4	4	4
Beam energy (GeV)	45	5.6	80	120	182.5
Bunches/beam	12000	15880	688	260	40
Beam current [mA]	1270	1270	134	26.7	4.94
Luminosity/IP $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	180	140	21.4	6.9	1.2
Energy loss / turn [GeV]	0.039	0.039	0.37	1.89	10.1
Synchr. Rad. Power [MW]			100		
RF Voltage 400/800 MHz [GV]	0.08/0	0.08/0	1.0/0	2.1/0	2.1/9.4
Rms bunch length (SR) [mm]	5.60	5.60	3.55	2.50	1.67
Rms bunch length $(+BS)$ [mm]	13.1	12.7	7.02	4.45	2.54
Rms hor. emittance $\varepsilon_{x,y}$ [nm]	0.71	0.71	2.16	0.67	1.55
Rms vert. emittance $\varepsilon_{x,y}$ [pm]	1.42	1.42	4.32	1.34	3.10
Longit. damping time [turns]	1158	1158	215	64	18
Horizontal IP beta β_x^* [mm]	110	110	200	300	1000
Vertical IP beta β_{u}^{*} [mm]	0.7	0.7	1.0	1.0	1.6
Beam lifetime (q+BS+lattice) [min.]	50	250	_	$<\!28$	< 70
Beam lifetime (lum.) [min.]	35	22	16	10	13

P. Bambade et al., The International Linear Collider: A Global Project, arXiv:1903.01629 [Hep-Ex, Physics:Hep-Ph, Physics:Physics]. (2019).

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	TDR	Upgr	ades
Centre of mass energy	\sqrt{s}	GeV	250	250	250	500	1000
Luminosity	$\mathcal{L} = 10^{34}$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.35	2.7	0.82	1.8/3.6	4.9
Polarisation for $e^{-}(e^{+})$	$P_{-}(P_{+})$		80%(30%)	80%(30%)	80%(30%)	80%(30%)	80%(20%)
Repetition frequency	$f_{ m rep}$	Hz	5	5	5	5	4
Bunches per pulse	n_{bunch}	1	1312	2625	1312	1312/2625	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	1.74
Linac bunch interval	$\Delta t_{\rm b}$	ns	554	366	554	554/366	366
Beam current in pulse	$I_{\rm pulse}$	$\mathbf{m}\mathbf{A}$	5.8	5.8	8.8	5.8	7.6
Beam pulse duration	$t_{\rm pulse}$	μs	727	961	727	727/961	897
Average beam power	$P_{\rm ave}$	MW	5.3	10.5	10.5	10.5/21	27.2
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathrm{x}}$	$\mu { m m}$	5	5	10	10	10
Norm. vert. emitt. at IP	$\gamma \epsilon_{ m y}$	nm	35	35	35	35	30
RMS hor. beam size at IP	σ^*_{x}	nm	516	516	729	474	335
RMS vert. beam size at IP	$\sigma^*_{ m v}$	nm	7.7	7.7	7.7	5.9	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	87.1%	58.3%	44.5%
Energy loss from beamstrahlung	δ_{BS}		2.6%	2.6~%	0.97%	4.5%	10.5%
Site AC power	P_{site}	MW	129		122	163	300
Site length	$L_{\rm site}$	\mathbf{km}	20.5	20.5	31	31	40

Tor Raubenheimer, FCC Week June 2023

TABLE I: Summary table of the ILC accelerator parameters in the initial 250 GeV staged configuration (with TDR parameters at 250 GeV given for comparison) and possible upgrades. A 500 GeV machine could also be operated at 250 GeV with 10 Hz repetition rate, bringing the maximum luminosity to $5.4 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ [10].

Summary of Backgrounds

The background sources have been investigated in various studies. For example, the beam-beam interaction and pair generation, radiative Bhabhas, disrupted beams and beamstrahlung photons for the 500 GeV ILC were studied with GUINEAPIG [333]. Also, the $\gamma\gamma$ hadronic cross section was approximated in the Peskin-Barklow scheme [2]. Based on these studies densities of particles which will reach the different sun-detectors have been estimated. Table I-1.3 summarises these estimates.

Table I-1.3

Background sources for the nominal 500 GeV beam parameters.

or	Source	#particles per bunch	< E > (GeV)
	Disrupted primary beam	2×10^{10}	244
	Bremstrahlung photons	2.5×10^{10}	244
	e ⁺ e ⁻ pairs from beam-beam inter- actions	75k	2.5
	Radiative Bhabhas	320k	195
	$\gamma \gamma \rightarrow hadrons/muons$	0.5 events/1.3 events	-

T. Behnke, et al.

The International Linear Collider Technical Design Report - Volume 4: Detectors, arXiv:1306.6329 [Physics]. (2013)

| Paestum, 11/10/2023

Machine backgrounds

Files produced by Andrea Carma at Z peak and Top threshold.

```
= A. Ciarma -- 13/12/2022 =
 Incoherent Pairs Creation (IPC) output files from GuineaPig++ for FCC-ee 4IP lattice
nominal beam energy: 45.6GeV @Z - 182.5GeV @Top
Each file corresponds to pairs created during 1BX
each line corresponds to a particle
The format of the line is:
m input >> PHEP4
                // energy [GeV]
    >> PHEP1 >> PHEP2 >> PHEP3 // momentum component [rad]
     >> VHEP1 >> VHEP2 >> VHEP3 // vertex coordinates [nm]
     >> process >> trash >> id ee; // process type; internal flag; id of the single particle - all useless for
tracking in the detector
Charge and PID should be manually set, according to the sign of the energy
```

```
PHEP4>0 -> IDHEP = 11; CHARGE =-1;
PHEP4<0 -> IDHEP =-11; CHARGE = 1;
```

A Lorentz boost should be applied along X to account for the fact that GP produces particles in the rest frame of the two beams, which due to the crossing angle (15 mrad) moves w.r.t. the detector.

Vincent.Boudry@in2p3.fr Calorime