WG2 - Simulation

Brieuc François (CERN) 2nd ECFA Workshop on e⁺e⁻Higgs/EW/Top Factories Oct. 13th, 2023 – Paestum

Based on material kindly provided by colleagues from C³, CEPC, CLIC, FCC and ILC

Content

- Assessment of a facility physics reach
- Detector geometry implementation
 - Highlighting flexibility and interoperability
- Simulation tips and tricks
- Detector optimization

Covering here a small subset of topics, chosen with my own bias \rightarrow apologies to people whose work is not covered

Context

- The 2020 update of the European strategy for particle physics has identified an electron–positron Higgs factory as the highest priority collider after the LHC
- Several projects proposed: covering here C³, CEPC, CLIC, FCC and ILC
- Though each facility features different environments and timelines, they must all answer the same questions
 - > What is the **physics potential** of my collider?
 - > What detector types are the most suitable?
 - > What is the **optimal detector configuration**?
 - Uncertainties, technological feasibility, cost, ...
- Answering the above questions requires simulation!

What is the **physics** reach of my facility?

Simulation

This talk mostly focuses on Full Simulation (+ digitization)

- > What are the solutions found to tackle the different simulation challenges?
- How can those solutions serve the entire community?

Brieuc Francois

Community Effort

- Prospective studies have limited man power (w.r.t. operating experiments)
 - Important to exploit synergies through a common effort
- > The Future Collider community decided to develop a **common software ecosystem**
 - Key4hep guiding principles
 - > Interoperability
 - "What was developed by some should be useable by others" (with minimal modifications)
 - Versatility: should cover large spectrum of needs (serves diverse facilities and detectors)
 - Flexibility: everything is under development, need to adapt to evolving detector configurations, experimental conditions, etc

CER

The Simulation Toolbox

Key4hep

How do we realize the guiding principles of the Key4hep software ecosystem?

- > Interoperability
 - Common algorithm orchestration framework: Gaudi (LHCb, ATLAS)
 - Common data format for algorithm input/output: edm4hep
 - Common detector geometry construction strategy: DD4hep
- Versatility
 - A set of packages of general interest in HEP is provided through the Spack package manager
 - Easily extended to meet everyone's need
- Flexibility
 - Provided by the above
 - Mainly DD4hep (more later)
 - Code factorization
- More details about Key4hep in Juan's talk

CER

CLUE

root

ACTS

CEPCSW

Some testbeam related SW not yet included

DD4hep

- DD4hep: generic detector geometry implementation framework supporting the full life cycle of the experiment
 - Conceptualization, optimization, construction and operations
- Whole detector description from a single source of information
 - Geometry, materials, readout, alignment, calibration, ...
 - Accessible from simulation, visualization, reconstruction and analysis
- Now a community standard: CMS, LHCb, EIC, Future Colliders, ...
- Convenient factorization enables the plug and play approach
 - C++ for generic geometry structure construction
 - Very simple XML configuration for detector specific implementations

The Detector Zoo

DD4hep Flexibility

- Further illustrations of the benefits from the DD4hep flexibility or 'plug-and-play' approach
 - CLD baseline has limited Particle ID (PID) capabilities
 - Very recently implemented an option of CLD with a dedicated PID detector
 - Shrink CLD tracker and squeeze the Array of RICH Cells (ARC) detector in front of the ECAL
 - It took only a few days! (excluding the implementation of the ARC itself)
 - Will allow us to evaluate the gain on PID and the loss on tracking/Particle Flow performance
 - ILD cost-performance optimization
 - Cost drivers: ECAL and coil/yoke system
 - Small" ILD version with reduced TPC radius → smaller ECAL and coil
 - Allows us to put the performance loss in perspective with the cost reduction
 - Similar tracker size as CLICdet → also provides a comparison between full silicon and TPC

Large and Small versions of ILD

Highlights from the various Higgs Factories

Highlights from CEPC

CERN

- 2 IPs, 4 detector concepts under development/optimization
 - The 3 CEPC Reference Detectors (CRD) are implemented in DD4hep, available in CEPCSW, part of Key4hep (+ IDEA)
- Complete simulation chain already available, currently migrating the Geant4 interface to Gaussino (LHCb): how to build
 - Better support for multi-threading, machine learning, fast simulation
 - > Three-step plan: use it with LHCb dependencies, remove them and then migrate to the Key4hep version when available
- Drift chamber simulation
 - > Cluster counting: Geant4 / Heed / Garfield++ \rightarrow waveform (slow)
 - > Used to train a ML-based 'fast' derivation of the waveform
 - Will be ported to Key4hep

Brieuc Francois

Highlights from FCC-ee

- 4 IP (baseline), 3 detector concepts (so far) under development/optimization
 - > Detailed beampipe: CAD drawing imported in DD4hep, PR opened
 - Luminosity measurement studies starting
 - CLD: fully available in Key4hep (DD4hep, ddsim, ILCSoft reconstruction)
 - > First Full Sim physics analysis (HNL) starting!
 - > IDEA: many components were developed in standalone Geant4
 - Whole detector being implemented in DD4hep/Key4hep
 - Most sub-detectors are at the digitization/reconstruction step
 - > ALLEGRO: new concept based on IDEA with different calorimeters
 - Started right away with Key4hep in mind
 - ECAL and HCAL available, will adapt the other IDEA sub-detectors
- Efficient calorimeter granularity optimization strategy
 - > Time consuming Geant4 simulation with 'atomic' granularity
 - Multiple readout granularities defined at digitization step, from one simulation
 - Now possible to have different cell size per longitudinal layer
- Detector geometries ported in k4geo (already hosting ILC and CLIC detectors) G. Marchiori

More details in Alvaro's talk

≻

Highlights from C³

- Recent effort gaining momentum fast!
- SiD (ILC) as a baseline detector
 - Will be re-optimized for the C³ environment
- Main difference coming from bunch structure
- Focusing thus now on background studies
- > Full bunch train e^+e^- pair production simulated with Guinea-Pig
 - Work ongoing to include hadron and muon backgrounds
- > $Z(\mu\mu)$ H(all) + background overlay with ILCSoft wrappers
 - BeamCal backscattering from different BX's visible
 - Timing is consistent (BX every 5.25 ns)
 - Working on improving performances, retrieving 'past' BX's and randomizing the physics event position in the train
- Findings will be ported to Key4hep!

CFR

Simulation

Brieuc Francois

Highlights from ILC and CLIC

- Feature the most mature simulation studies (ILC TDR in 2013)
 - Influenced the design of central Key4hep components (DD4hep and edm4hep)
 - Simulation today: DD4hep, ddsim, MarlinProcessors
- Allowed Key4hep to profit from a pool of advanced simulation tools already in its early stages (MarlinWrappers + dataformat conversions)
- ILD can study 2 calorimeter options with one simulation
 - > Readout and active layers have similar thickness (mm and X_0)
 - Put both sensitive detectors (no readout), output two collections
- > ILD being adapted for circular colliders!
 - Imported MDI from CLD, adapted CLD inner sub-detectors
 - Profit from common code (return on investment)

Prev.

scintillator

PCB

Fe

EDM4hep2LCIO

converter

algorithm

CER

Brieuc Francois

Closing Thoughts

Why to invest in interoperability?

- Key4hep provides the simulation toolbox + guidelines to maximize interoperability
 - > They are not "ready solutions guaranteeing full inter-operability"
 - > The different facilities have to put efforts in their own implementations to ensure it
 - And provide documentation
- > The main difficulty for this endeavor: why should "my facility" invest in this extra effort given the already limited manpower?
 - > The big picture answer
 - Better usage of global resources
 - For the benefit of HEP, as a field driven by a common interest
 - > Too philosophical?
 - > The pragmatic answers
 - Generalizing software usually comes with a better code organization
 - Long term projects: your software will be used for many years, by many generation of physicist working on different detector versions → flexibility and documentation will pay off for your facility as well!

What is ahead of us?

- A lot of work has been done, but we still have a lot to do (applies more to some facilities than others)
 - Validation and fine tuning of the Full Sim with test beam data
 - > Gain confidence in our models
 - Comprehensive detector optimization
 - Comparing detector concepts based on a few performance metrics is not enough
 - How do they combine together?
 - > Optimization should ideally use a set of 'reference physics analyses benchmarks'
 - What improves some analyses may harm others
 - Performing all the Full Sim benchmark analyses for each detector options is unrealistic
 - Full and Parametrize simulation should keep playing together
 - > Defining 'reference analyses' is a difficult exercise
 - Everyone has its favorite measurement/BSM search

 \geq

Conclusions

- The Future Collider community adoption of a common software development strategy/ecosystem (Key4hep) is important and growing
- The interoperability, enabled by the usage of a common framework, already paid back in many regards
- > The Future Higgs Factories have implemented 10's of detector concepts, and much more sub-detectors
 - This will help us to find optimal detector solutions for the facility(ies) which will become a reality
 - > And it will in turn maximize the physics we will make out of it

Thank you!

Additional material

Background Overlay

- > In real experimental conditions, there is more than the hard process
 - Pair production, Bhabha scattering, synchrotron radiation, beam losses, ...
- All facilities must assess the impact of background on detector performance
- Not practical to simulate the complete background for each physics event
 - Large CPU consumption
 - Bounds simulation to accelerator parameters
- The solution: simulate background contribution separately, overlay before digitization (reconstruction for some cases)
 - > Tools available from ILCSoft: OverlayTimingGeneric
 - DD4hep compliant, need 'slcio' files
 - Work started to port it as Key4hep 'native' tool (k4Overlay)
- Machinery to handle this in Grid submission available through ILCDirac

CER

A. Sailer

CEPC Detectors

CLIC Detector

CERN

ILC Detectors

Simulation

Brieuc Francois

CERN

Simulation Toolbox

- > Geant4 remains the favorite tool to model the passage of particles through matter
- Key4hep hosts convenient interfaces to interact with Geant4
 - > ddsim (ILC, from DD4hep)
 - k4SimGeant4 (FCCSW, Gaudi algorithm/tools)
 - DetSimAlg (CEPCSW, Gaudi algorithm/tools)
 - > What is available?
 - Shipping of the detector geometry, sensitive actions, physics lists, ...
 - Magnetic fields: homogeneous, from known geometries (e.g. solenoid) or by providing a full field map (e.g. to study field non uniformities)
 - Vertex position and smearing
 - Lorentz boost due to crossing angle
- > What would we need more?
 - Beam energy spread should be done at the MC generator level
 - Crossing angle smearing?

PID Detectors

CERN

- > Detector layouts are not frozen!
 - Exploring further sub-detector technologies
- Particle ID detectors can complement/replace dE/dx or dN/dx
 - > Technology more mature then at the LEP time (DELPHI)
 - > LHCb RICH
 - > Less complex, lower material budget (target 5% X_0)
- Accurate and comprehensive estimation of what it brings needs Full Sim
 - Photon yield/collection, additional material budget
 - > Quite difficult to implement
- Array of RICH Cells (ARC) implemented in DD4hep
- Readout available, reconstruction has started

