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‘@ Introduction: CERN EP Magnet Working Group

* Within CERN, EP Magnet working group comprises members from several
groups within CERN EP Department

* Main responsibility: Maintenance, operation, and troubleshooting of
(superconducting) detector magnets, such as ATLAS, CMS, Morpurgo dipole,
M1, Vertex magnets, etc.

* |n addition, since few years, participation in technology development for
(superconducting) detector magnets through CERN EP R&D WPS8

* Support for superconducting detector magnet projects, such as BabylAXO,
Alice-3, AMS-100, FCC-hh, FCC-ee, Muon collider, NA60+, etc.



@ Introduction: Contributions to FCC-ee superconducting detector magnets

In recent years, conceptual design studies of
superconducting detector magnets for the
FCC-ee “IDEA” and “CLD” detector concepts
[1-5] (not the main focus of this talk).

* |DEA detector magnet: 2 T ultra-
transparent solenoid, featuring full
magnetic shielding through a return yoke,
where particles must traverse the
solenoid and vacuum vessel before
reaching the calorimter

 CLD detector magnet: 2 T larger solenoid
inside yoke featuring partial magnetic
shielding
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What technology developments are useful, needed, critical for future
A superconducting detector magnets?
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“Standard” Cryogenic solution

“Standard” cryogenic solution for cooling
superconducting detector magnets, including for FCC-ee

Liquid helium accumulated in control Dewar, located at
elevated height, fed with liquid helium from external
cryogenic plant

External cryogenic plant also provides forced-flow
gaseous helium cooling at ~¥50 K to maintain thermal
shield temperature.

Cooling lines between Control Dewar and cold mass,
for circulation of mixture of liquid and gaseous helium
Gravity-powered thermosyphon circulation: Minimal
losses, no pump needed, circulation keeps going even
in case of power cut

Convenient, well-understood, reliable, and historically
widely demonstrated solution for cooling
superconducting detector magnets

Control Dewar, at
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Liquid-helium Thermosiphon of ATLAS
Central Solenoid [6] (very similar to CMS)
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ATLAS Magnets (Comprising Central Solenoid, Barrel Toroid, 2x End-cap Toroid,
cryogenic needs [7]:

Magnet power consumption numbers (ATLAS example)

2400 m? of cold mass area, 140 kA of current carried by current leads
(connecting 4.5 K to room temperature)

20 kW cooling power at ~50 K for maintaining thermal shield temperature

3 kW cooling power at 4.5 K for maintaining cold mass temperature

3 kW cooling power at 4.5 K for maintaining bottom of current leads at 4.5 K
Cryogenics main power consumer at 2.9 MW (~90% of total for magnet
system)

Nb-Ti-based superconducting detector magnets, energy-efficiency from a
capital perspective:

Officially acknowledged ATLAS magnet cost in 2007: 159 MCHF

Typical cost of commercial solar/wind electricity production: ~1 CHF/Watt
[8,9]

This implies: Capital investment to cover electricity consumption of
cryogenics: ~3 MCHF, less than 2% of overall magnet cost

For large superconducting detector magnets: Expensive, despite being
designed as-cheap-as-possible, and magnet power consumption looks
reasonable given upfront cost.

Important to limit power consumption where possible, provided it does not
substantially increase the overall cost of the magnet system
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ATLAS Detector including
superconducting magnets




@ Novel cryogenic technology development: HTS-based current leads

Conventional current leads for superconducting detector

magnets: T @300K
 Current leads: Needed to connect magnets at 4.5 K to racuamshied
room-temperature power converters E\
e Conventional solution [10]: Liquid helium evaporates F— |5
.. . . . | GHe @60K [[L.
inside cooling leads to provide cooling power - About -
third of total magnet power consumption dedicated to C B’“S-“*“E’;ﬁf ' copper jont
maintaining current lead temperature | [ ' ,(|
L =
« Novel solution, similar to what was applied in LHC [11]: 5 gl‘ ‘/HTSpart
* >99% of current lead heat load intercepted at ~50 K -
 4.5Kto 50K section comprises stainless steel ¢ T~ coLp mass @42k
shunted with high-temperature superconducting T -
tapes '
* Resulting in minimal heat load at 4.5 K ATLAS Toroid current leads [5] Concept of an HTS-based current lead

(Courtesy W. Gluchowska)
Expectation with novel solution: 10x reduction in power

consumption needed for maintaining the current lead
temperature 2 Currently under investigation, in context of
CERN EP R&D WP8



magnets

@ Novel cryogenic technology development: Cryocoolers for superconducting detector

Conventional cryogenic plant:
* Relatively high efficiency, in terms of cooling power at 4.5 K vs
electricity consumption at 300 K

~500 mm
Cryo-coolers:

although higher-efficiency commercially
available cryocoolers are expected this year and the next
 Compact and modular, contributing to enhanced reliability and

s Example of a commercially-  Cryo-cooler-to-helium-gas heat

reaundancy available cryo-cooler cold- exchanger, under development

* Low-maintenance, closed-circuit without liquid helium = Only head, to be connected to an in context of CERN EP R&D WP8
modest amount of helium needed, important given future helium  oxternal compressor [12,13] (Courtesy W. Gluchowska)

availability constraints and rising price of helium
* Allows for localized liquefaction (less overall heat load), and
compatible with thermosiphon cooling

* Localized helium gas circulation for thermal-shield cooling Demonstrator setup, featuring

cryo-coolers, cryofan, heat
exchangers, HTS-based current
leads (CERN EP WPS8, Courtesy W.
Gluchowska)

Currently under development in context of CERN EP R&D:

* Cryocooler-to-helium heat exchangers, local helium liqguefaction +
thermosyphon, HTS-based current leads, demonstrator setup

* Part of the BabylAXO magnet design




@ Quench detection and protection

Quench detection and protection of conventional aluminum-stabilized Nb-Ti
superconducting detector magnets:
* Quench detection through continuous redundant voltage measurements and
inductive balancing
* Quench protection through energy extraction (i.e. external dump resistor) or 6N

guench heaters
* Well-understood and works well \®
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Quench detection and protection of future High-Temperature-Superconductor-
based superconducting detector magnets:
* More challenging detection, as quench propagation velocity is very low
* More challenging protection, given that inducing a large normal-zone throughout Quench protection of
the cold mass is extremely difficult superconducting detector magnet
* Nevertheless, concepts do exist to tackle both quench detection and protection, for FCC-ee IDEA concept [1]
suitable for both Low and High-Temperature Superconductor for example [14] =
Under investigation in CERN EP R&D WP8 through demonstration with
demonstrator coil

- For conventional aluminum-stabilized Nb-Ti superconducting detector magnets,
qguench detection and protection is available and well-understood



A Ultra-transparent vacuum vessel technology

Of interest for ultra-transparent magnets

(such as for FCC-ee IDEA detector): Ultra-

transparent vacuum vessel

* Solenoid for IDEA concept: Particles
must traverse solenoid before reaching
calorimeter - Transparent cold mass
and vacuum vessel needed.

* Major challenge: Outer vacuum vessel
wall, exposed to bucking

* For highest transparency:

* Smart structures such as honey-
combs, to increase effective
thickness and resilience against
buckling

* Smart materials, such as carbon-
based materials

e Under investigation in context of CERN
EP R&D Work-package 4

Figure 2. Honeycomb panel configuration in the preliminary design.

Aluminum-based honey-comb
vacuum-vessel technology, as
demonstrated previously at KEK
(Courtesy A. Yamamoto)
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A Critical need for future superconducting detector magnets: Conductor (1/3)

Superconducting detector magnets require unique
conductor technology, owing to their very large
stored magnetic energy
Historically proven solution: Aluminum-stabilized
niobium-titanium conductor
e Superconducting Nb-Ti carries current during
nominal operation, and aluminum provides
stability and mechanical reinforcement and
temporarily carries current in case of a quench
* Aluminum stabilization: Cost-effective, robust,
well-understood and proven over 50 years,
with excellent thermal, electrical, and (in case
of aluminum-alloy) mechanical properties for
a given weight
* Niobium-titanium superconductor: Most
widely used superconductor, cheap, widely
available, comfortably allows up to ~4-5T
(covers most detector needs), mechanically
extremely resilient compared to other
superconductors

Nb-Ti Rutherford cable

High-purity aluminum

Aluminum-alloy

64 mm

reinforcement 21.6 mm
Cross-section of the CMS conductor
Courtesy: The CMS collaboration
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@ Critical need for future superconducting detector magnets: Conductor (2/3)

e Superconducting Detector Magnet Workshop (2022, co-
organized by CERN and KEK):

* Following this: Since 2023, organization of inter-departmental

Aluminum-stabilized conductor was a topic of key
interest

Workshop included world-wide representatives from
institutes and industry

Findings: On-going R&D effort at IHEP with Chinese
industry, but no commercial availability since a few
years

working group and associated steering committee at CERN
supported by KEK expertise, for the purpose of re-
establishing availability in context of CERN EP R&D

 Plans[17]:

Currently on-going: Effort to collaborate with industry
using existing facilities on re-establishing conductor
technology, which includes co-extrusion process and
cold-working facility

Future options, depending on budget availability: Setup
of a dedicated facility in industry or at institute

Superconducting Detector Magnet Workshop,
held at CERN in 2022
(indico.cern.ch/event/sdmw)
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Top view

Co-extrusion process needed for aluminum-
stabilized Nb-Ti conductor production
(Courtesy B. Cure [17])
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@ Critical need for future superconducting detector magnets: Conductor (3/3)

Some possible conductor long-term alternatives (not exhaustive):

* Aluminum-stabilized niobium-titanium:
* Proven over 50 years, affordable, well-understood, with sufficient magnetic field range to cover typical
superconducting detector magnets, mechanically extremely resilient

* On-going effort to re-establish availability through CERN EP R&D WP8

e Aluminum-stabilized Magnesium-diboride:
e Of interest for superconducting busbars and magnets
 Demonstrated for superconducting busbars, through LHC Hi-lumi superconducting link project
* Would allow operation at elevated temperatures (10-20 K),

* On-going effort at INFN Genoa to investigate feasibility for proposed Alice-3 solenoid
* Aluminum-stabilized high-temperature superconducting (HTS) conductor (ReBCO / Bi-2223)
e Of interest for superconducting busbars and magnets
 Would allow operation over wide temperature range (4-77 K) and wide magnetic field range, significantly beyond

the limits of niobium-titanium

* On-going effort within CERN EP R&D WPS8 to fabricate short-length prototype conductors

13



ﬂ! Summary: R&D of superconducting detector magnet technologies for future Higgs factory

* Cryogenics
e Existing cryogenic solutions work well, although helium price and availability is a concern
* Investigations within context of CERN EP R&D WP8:
* Cryo-coolers and associated technologies
* HTS-based high-efficiency current-leads to reduce cryogenic power requirement for superconducting detector
magnets

Quench detection and protection
* Existing technology works well for conventional superconducting detector magnets
* Within context of EP R&D WPS8: Novel method for quench detection and protection for both low- and high-temperature
superconducting magnets under investigation

Ultra-transparent vacuum vessel technology:
e Effort within EP R&D WP4 to optimize transparency through smart geometries (such as honey-comb structure) and novel
materials (carbon-based vacuum-vessel wall)

Conductor technology for superconducting detector magnets
e Commercial availability of work-horse aluminum-stabilized Nb-Ti conductor has been an issue in recent years, therefore an
inter-departmental effort at CERN with KEK support was organized to see how availability may be re-established
e Other conductor types may be of interest as well, although there are presently no obvious fully developed, just-as-good,
and commercially-available candidates (that | know of)
14



! References

[1] Deelen, Dudarev, Cure, Mentink, “Design and Quench Analysis of Superconducting Solenoids for the Lepton Future Circular Collider”, IEEE Transactions on Applied
Superconductivity 32, 4100204 (2022)

[2] Mentink, Sasaki, Cure, Deelen, Dudarev, Abe, lio, Makida, Okamura, Ogitsu, Sumi, Yamamoto, Yoshida, linuma, “Superconducting detector magnets for high energy
physics”, Journal of Instrumentation 18, (2023)

[3] Deelen, Cure, Dudarev, Mentink, Vaskuri, “High Temperature Superconductor Magnets for Future Particle Physics Experiments”, presented at ASC2022 (2022)

[4] Deelen, Dudarev, Cure, Mentink, “Superconducting Solenoids for the IDEA and CLD Detector Concepts”, presented at the 5th FCC Physics Workshop (2022)

[5] Deelen, Cure, Dudarev, Mentink, “Designing Superconducting Solenoids for FCC-ee”, presented at the Lar Calorimeter workshop (2022)

[6] Yamamoto, Kondo, Doi, Makida, Tanaka, Haruyama, Yamaok,a “Design and Development of the ATLAS Central Solenoid Magnet”, IEEE Trans. On Appl. Supercond. 9,
p. 852 (1999)

[7] Ten Kate, “ATLAS Superconducting Toroids, the Largest Ever Built”, Int. J. Mod. Phys. A, p. 2933 (2010)

[8]. https://coldwellsolar.com/commercial-solar-blog/how-much-investment-do-you-need-for-a-solar-farm/

[9]. https://www.energy.gov/eere/wind/articles/land-based-wind-market-report-2022-edition

[10]. Dudareyv, Ten Kate, Boxman, Keilin, Kopeikin, Kovalev, Kuljamzin, Romanovskii, Shcherbakov, Shugaev, Stepanov, “20.5 kA Current Leads for ATLAS Barrel Toroid
Superconducting Mangets”, IEEE Trans. On Appl. Supercond. 12, p. 1289 (2002)

[11]. Ballarino, “Current Leads for the LHC Magnet System”, IEEE Trans. On Appl. Supercond. 1275 (2002)

[12]. https://absolut-system.com/cryogenics/cryocooler/

[13]. https://www.shi.co.jp/english/products/machinery/cold/index.html

[14]. Mentink, Dudarev, Mulder, Nugteren, ten Kate, “Quench Protection of Very Large, 50-GJ-Class, and High-Temperature-Superconductor-Based Detector Magnets”,
IEEE Transactions on Applied Superconductivity (2015)

[15]. Barba, Chalifour, Bremer, Soledad Molina, Gargiulo, Angeletti, Aleksa, “R&D on light-weight cryostats and on high-density signal feedthroughs”, 4th FCC Physics
and Experiments Workshop (2020)

[16]. Yamamoto, “Superconducting Technology for Future Colliders and Detectors”, Muon Collider Workshop, October 2023

[17]. Cure, “Status and plans of aluminium stabilized conductor R&D at CERN for detector magnets”, Muon Collider Workshop, October 2023

15



	Slide 1: R&D on superconducting detector magnets for a future Higgs factory
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

