

1

Silicon detectors for tracking and vertexing

Ziad EL BITAR

Institut Pluridisciplinaire Hubert Curien

Outline

- Vertex and tracker requirements
- Detector concepts
- DRDT and WGs
- R&D in progress
- Summary

APOLOGIES if your favorite R&D is not presented !!

ECFA recommendation & synergies

ECFA recognizes the need for the experimental and theoretical communities involved in physics studies, experiment designs and detector technologies at future Higgs factories to gather. ECFA supports a series of workshops with the aim to share challenges and expertise, to explore synergies in their efforts and to respond coherently to this priority in the European Strategy for Particle Physics (ESPP).

K. Jakobs, FCC Physics Workshop, Feb 2022

_يوريّ

Goal: bring the entire e⁺e⁻ Higgs factory effort together, foster cooperation across various projects; collaborative research programmes are to emerge

Must happen or main physics goals cannot be met 🛑 Important to meet several physics goals 😑 Desirable to enhance physics reach 🏮 R&D needs being met

ECFA 2021: R&D Detector Roadmap

Requirements

ECFA 2021: R&D Detector Roadmap

"Technical" Start Date of Facility (This means, where the dates are not known, the earliest technically feasible start date is indicated - such that detector R&D readiness is not the delaying factor)			< 2030			2030-2035				2035 - 2040 2040-2045		> 2045							
			Panda 2025	CBM 2025	NA62/Klever 2025	Belle II 2026	ALICE LS3 ¹⁾	ALICE 3	LHCb (≳LS4) ¹⁾	ATLAS/CMS (≳ LS4) ¹⁾	EIC	LHeC	ILC ²⁾	FCC-ee	CLIC ²⁾	FCC-hh	FCC-eh	Muon Collider	
Vertex Detector ³⁾	MAPS Planar/3D/Passive CMOS LGADs	DRDT 3.1 DRDT 3.4	Position precision σ _{hit} (μm)		<mark>≃ 5</mark>		≲ 5	~ 3	≲ 3	$\lesssim 10$	≲15	≲3	≃ 5	≲3	≲ 3	≲ 3	~ 7	~ 5	≲ 5
			X/X _o (%/layer)	≲0.1	≃ 0.5	≃ 0.5	≲0.1	≃ 0.05	≃ 0.05	~ 1		≃ 0.05	≲0.1	≃ 0.05	≃ 0.05	≲0.2	~ 1	≲0.1	≲0.2
			Power (mW/cm²)		≃ 60			≃ 20	≃ 20			≃ 20		≃ 20	≃ 20	≃ 50			
			Rates (GHz/cm ²)		≃ 0.1	$\simeq 1$	≲0.1		≲0.1	≃6		≲0.1	≃ 0.1	≃ 0.05	≃ 0.05	~ 5	≃ 30	≃ 0.1	
			Wafers area (") ⁴⁾					12	12			12			12		12		12
		DRDT 3.2	Timing precision $\sigma_t(ns)^{5)}$	10		≲0.05	100		25	≲ 0.05	≲ 0.05	25	25	500	25	~ 5	≲ 0.02	25	≲0.02
		DRDT3.3	Radiation tolerance NIEL (x 10 ¹⁶ neq/cm ²)							≃6	≃ 2						$\simeq 10^2$		
			Radiation tolerance TID (Grad)							~ 1	≃ 0.5						≃ 30		
Tracker ⁶⁾	MAPS Planar/3D/Passive CMOS LGADs	DRDT 3.1 DRDT 3.4	Position precision σ _{hit} (μm)						≃ 6	≃ 5		≃6	≃6	≃ 6	≃ 6	~ 7	≃ 10	≃ 6	
			X/X _o (%/layer)						~ 1	~ 1		~ 1	~ 1	≃1	~ 1	~ 1	≲2	~ 1	
			Power (mW/cm²)						≲ 100	≃ 100		≲ 100		≲ 100	≲ 100	≲ 150			
			Rates (GHz/cm ²)							≃ 0.16									
			Wafers area (") ⁴⁾						12			12		12	12	12	12		12
		DRDT 3.2	Timing precision $\sigma_t(ns)^{5)}$						25	≲ 25		25	25	≲0.1	≲0.1	≲0.1	≲0.02	25	≲0.02
		T3.3	Radiation tolerance NIEL (x 10 ¹⁶ neq/cm ²)							≃ 0.3							≲1		
		DRD	Radiation tolerance TID (Grad)							≃ 0.25							≲1		

Exploring new physics...

Constraints on vertex and tracker

Physics O(Hz/cm²)

Requirements in summary

- Spatial resolution : ~ 3 um (except LHCb, FCChh and Muon Colliders)
- Low material budget : 0.05 to 0.15 % X₀
- Fast readout, low power consumption (< 20 mW/cm² except for CLIC) compatible with air cooling.
- Increase Radiation Hardness and more R&D for Ultra-Fast timing for future Hadrons and Muon Colliders

Vertex/tracking detector concepts

Collider	IL.	.C	CLIC		FCC-ee)	CEPC			
Detector Concept	SiD	ILD	CLICdet	CLD	FCC-ee IDEA	Noble LAr/LKr	CEPC baseline	CEPC IDEA		
B-field [T]	5	4	4	2	2	2	3	2		
Vertex inner radius [mm]	14	14	31	17 → 12	17 → 12	17 → 12	16	16		
Tracker out. radius [m]	1.25	1.8	1.5	2.2	2.0	2.0	1.81	2.05		
Vertex	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel		
Tracker	Si-strips	TPC/ Si-strips	Si-pixel	Si-pixel	DC/ Si-strips	DC/Si-strips or Si-pixel	TPC/Si-strips or Si-strips	DC/ Si-strips		
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $										
IDEA	Noble L or or o			CEPC baseline						

Silicon Pixel R&D examples

D. Dannheim., 11th BTTB 2023

DRDT

Task Force 3 Solid State Detectors has identified the essential Detector R&D Themes (DRDT) which capture the most critical requirements:

- DRDT 3.1 Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.
- DRDT 3.2 Develop solid state sensors with 4D-capabilities for tracking and calorimetry.
- DRDT 3.3 Extend capabilities of solid state sensors to operate at extreme fluences.
- DRDT 3.4 Develop full 3D-interconnection technologies for solid state devices in particle physics.

Implementation of TF3 Solid State Detectors		Austria: HEPHY Brazil: USP
22–23 mars 2023 DERN useau horaire Europe/Zurich	Entrer le texte à rechercher Q	Canada: Carleton/NRC (Ottawa), SFU, TRIUMF Chile: UNA8/354/FIR, UTSM Chile: Dalana Univ. of Tech, HEP, Jilin Univ., USTC
Accueil The workshop will be on March 22-23rd at CERN. Ordre du jour It is a mixed-mode meeting, in person and remote. Liste des contributions Inscription Please send the DRD3 questionnaire (linked below) by January	/ 271h.	Croatia: RBI Czech Republic: Charles Univ Prague, FNSPE CTU, FZU Czech Academy Finland: Helsinki-HIP, LUT University of Technology France: APC, copn. iniz,423, UCLab, IP21, IP4C, Irfu CEA, LPNHE Paris Germany: Born, CIS, DESY, Dortmund, Freiburg, Gottingen, GSI, Heidelberg, HU Berlin, IZM, KIT, MPG HLL, M Greece: Demokritos India: ITM Israel: Tel Aviv, WIS
CERN Finit le 23 mars 2023, (2):00 Finit le 23 mars 2023, (2):03 Europe/Zanch Euro	001 Is carte estionnaire DR03.docx. estionnaire DR03.pdf	Italy: FBK, INNY BB, INFN CNR Perugia, INFN FL, INFN Genova, INFN Pisa, INFN To, UniFL, UniML, UniPavia Japan: KEK Lithuania: Vilnius University Montenegor: University of Montenegoro Netherlands: ESA, NiKhef, PARTREC Polant. AGHIKrakow Romania: NIMP Slovenia: JSI Spain: CNA, GIE, ETSI-sevilla, IFAE:RDS0, IFCA-Santander, IFIC- Valencia, IGFAE-USC, IMB-CNM-CSIC, ITAIN Switzerland: CERN, ETH, PSI, UNIGE, UZH

Implementation of TF3 Solid State Detector @ CERN, March 22-23, 2023

2nd ECFA Workshop, October 11-13 2023, Paestum

Los Alamos, OSU, SCIPP, Univ. of Illinois, Chicago, Univ. of new Mexico, UTK

Working Groups

- WG1 Monolithic CMOS Sensors
- WG2 Sensors for Tracking and Calorimetry
- WG3 Radiation damage and extreme fluences
- WG4 Simulation
- WG5 Characterization techniques, facilities
- WG6 Wide bandgap and innovative sensor materials
- WG7 Interconnect and device fabrication
- WG8 Dissemination and outreach

R&D

Hybrid pixel detectors

• Enable to factorise R&D on sensors and readout ASICs.

- Take advantage of advancements in ASIC technologies and performances
- Bumping remains the main challenge as well as material budget, cost and minimal pitch achieving.
- R&D with Fraunhofer IZM for development of single-die bonding process
 - Based on support wafer processing with SnAg bumps
 - Verified for multiple CLICpix2 assemblies in lab and beam-test
 - 128x128 pixels with 25 μm pixel pitch
 - 50 μm , 100 μm , 130 μm sensor thickness

CLICpix2 ASIC bump-bonded to an active edge

<u>P. Svihra et al., BTTB 2023</u>

Reference 1

Reference 2

High Voltage

Cross-section of bonded assembly

Interconnection yield above **99.7%** for four tested devices <u>10.1088/1748-0221/18/03/C03008</u> X ray image of bumps

provided by Nikon XT V 160 by Abishek Sharma

Hybrid pixel detectors

Conductive Particle

3 um

P. Svihra et al., BTTB 2023

ANISOTROPIC CONDUCTIVE ADHESIVE BONDING

- Anisotropic Conductive Film/Paste (or Non-conductive)
 ACF/ACP or NCF/NCP
 - ACF widely used in industry (display manufacture, ...)
 - Process needs adapting for 2D bonding (pixels)
- Bonding done at Geneva University using semi-automatic flip-chip bonder
 - Precise temperature, pressure and alignment control, heating up to 400 $^\circ\!\!C$
- Film based bonding has two steps lamination and bonding
 - Pressure applied to displace and compress particles
 - Epoxy cures at 150 °C for a few seconds only

Ziad EL BITAR, ECFA October 11-13 2023,

Paestum

9

Exploring the TPSCo 65 nm

- Benefits : 65 nm vs 180 nm
 - Better spatial resolution due to smaller feature size.
 - Larger wafers : 300 mm vs 200 mm => final sensor : 27x9 cm².
 - Lower power supply : 1.2 V vs 1.8 V => Low power consumption.
 - Lower material budget : thinner sensitive layer ($\sim 10 \mu m$).
- Provides 2D stitching
- 7 metal layers
- Process modifications for full depletion:
 - Standard (no modifications)
 - Modified (low dose n-type implant)
 - Modified with gap (low dose n-type implant with gaps)

https://doi.org/10.1016/j.nima.2017.07.046

Alice detector LS3 upgrade: ITS2 (180 nm) → ITS3 (65nm)

R. Ricci, PSD 2023

ITS2:

(S.Beolé, iWoRiD 2022)

- 7 layers of MAPS
- TJ 180 nm CMOS
- 12.5 Giga pixels
- Pixel size: 27×29 μm²
- Water cooling
- 0.3 % X_0 / inner layer

ITS3

(M. Šuljić, iWoRiD 2023)

- 4 outer layers of ITS2
- 3 new fully cylindrical inner layers
 - Sensor size up to 27×9 cm
 - Thickness 30-40 μm
 - No FPCs
 - Air cooling in active area
- + 0.05 % $X_{\rm 0}$ / inner layer

First Test Submission : MLR1

- Submitted in December 2020
- Main goals:
 - Learn technology features
 - Characterize charge collection
 - Validate radiation tolerance
- Each reticle (12×16 mm²):
 - -10 transistor test structures (3×1.5 mm²)
 - 60 chips (1.5×1.5 mm²)
 - Analogue blocks
 - Digital blocks
 - Pixel prototype chips: APTS, CE65, DPTS

CE65 : Circuit Exploratoire 65 nm

- 2 matrix sizes
 - 64×32 with 15 μm pitch
 - 48×32 matrix with 25 μm pitch
- Rolling shutter readout (50 µs integration time)
- 3 in-pixel architectures:
 - AC-coupled amplifier
 - DC-coupled amplifier
 - Source follower
- 4 chip variants:
 - Standard process 15 μm pitch
 - Modified process 15 μm pitch
 - Modified process with gaps 15 μm pitch
 - Standard process 25 μm pitch
- Fabrication in September 2021
- Presented results from CERN PS beam test : May 2022

1.5×1.5 mm² ¹⁸

CE65 variants

Variant	Process	Pitch	Matrix	Sub-matrix			
CE65-A	std	$15 \mu m$	64×32	AC/21, DC/21, SF/22			
CE65-B	mod_gap	$15\mu m$	64×32	AC/21, DC/21, SF/22			
CE65-C	mod	$15\mu m$	64×32	AC/21, DC/21, SF/22			
CE65-D	std	$25 \mu \mathrm{m}$	48×32	AC/16, DC/16, SF/16			

Pixel pitch impact was evaluated on standard process only

S. Senyukov, iWoRiD 2022

Process modification impact

Standard

Modified with gap

Modified process effective for depletion...

Pixel pitch impact

Cluster charge

Pixel pitch evaluation for standard process only

Seed charge

• Seed peaks

Charge sharing

- 4 pixels contain all cluster charge for AC submatrix in A4-15um where it needs 5-6 pixels for D4-25um.
- Seed pixel contains: **more** then 60% in average for A4

a little bit less then 60% in average for D4

Simulations: ALLPix + TCAD

C. Ferrero et al., TREDI, 2023

ARCADIA fully-depleted monolithic active pixel sensors optimised for sub-nano second timi

ARCADIA pad diode monolithic sensor

Weighting Potential - 3x3 simulation domain 50 / 100 / 150 µm pitch

Stitching passive strip CMOS

. Zatocilova et al., iWoRiD 2023

27

Passive CMOS Strips

- · Sensors fabricated in LFoundry in a 150 nm process
- * Passive \rightarrow no electronics included
- 150 µm thick silicon wafer
- Two lengths of strips 2.1 and 4.1 cm
 - * 1 $\text{cm}^2\,\text{reticle}$ used \rightarrow strips had to be stitched
- Up to five stitches in each sensor
- Three different designs
- Regular similar to the ATLAS strip design
- Low dose 30 & 55 low dose implant and NIM capacitor

Irradiated

0.8

0.6

0.4

0.2

0.0

5

Efficiency

DC pad

Regular

Stitching active pixel CMOS

M. Suljic et al., iWoRiD 2023

- First MAPS for HEP using stitching one order of magnitude larger than previous chips
- "MOSS": 14 x 259 mm, 6.72 MPixel (22.5 x 22.5 and 18 x 18 μm²)
 conservative design, different pitches
- "MOST" : 2.5 x 259 mm, 0.9 MPixel (18 x 18 μm²)
 - more dense design
- Plenty of small chips (like MLR1)

reticle

Bent sensor: reducing material budget

M. Suliic et al., iWoRiD 2023

VXD Prototype - CEPC

S. Li et al., BTTB 2023 T. Wu et al., PSD 2023

Pixel size: 25 μ m x 25 μ m

FPGA board

Vertex Prototype

Test Beam @ DESY

Summary

- Plenty of R&D to follow carefully.
- Exploring new technologies is very promising (TPSco65 nm).
- Some detector requirements are achieved: spatial resolution (~5 um).
- Material budget is drastically reduced (bent sensors).
- Stitching sensors is very well advanced.

THANK YOU