

Key4hep: Current status and recent developments

Juan Miguel Carceller

on behalf of the Key4hep team

CERN

October 12, 2023

Key4hep

- Turnkey software for future accelerators
- Share components to reduce maintenance and development cost and allow everyone to benefit from its improvements
- Complete data processing framework, from generation to data analysis
- Community with people from many different experiments: C³, CEPC, CLIC, EIC, FCC, ILC, Muon Collider, etc.

The Key4hep Event Data Model: EDM4hep

- Data Model used in key4hep, it is the language that all components must speak
- From a specification in a yaml file, and using podio, the C++ code containing all the classes and methods is generated

- Classes for physical objects, for example: MCParticle
- Associations between these, for example: between MCParticle and a ReconstructedParticle
- Adapt based on the news of the collaborators. Example: RawTimeSeries previously was TPCHit

The Key4hep Framework

- Gaudi based core framework:
 - k4Gen for integration with generators
 - k4SimGeant4 for integration with Geant4
 - k4SimDelphes for integration with Delphes
 - k4geo for detector models, previously lcgeo
 - k4FWCore provides the interface between EDM4hep and Gaudi
 - k4MarlinWrapper to call Marlin processors

Used by LHCb, ATLAS, Key4hep and others

• ..

The Key4hep Framework

- Key4hep provides the interface and the glue to make the different pieces talk to each other
- Components are picked up from other places (for example Gaudi for the event processing framework)
- il CSoft can be used thanks to the k4MarlinWrapper, we benefit from lots of years of development and tested software
- Results on detector studies, analyses, etc.

key4hep			Q
Contributions	Materials		

Challenges and Solutions in Reconstructing Higgs Decays to Heavy Flavour lets

The reconstruction of heavy flavour jets will play an important role at future e+e- Higgs factories: SHIto b\bar(b)S is the most frequent decay mode of the SM Higgs, and \$H\to c\bar(c)\$ is particularly challenging to measure at the

- Alla Yaser Radkhorrami (DESY), Jenny List, et al
- 間 11 October 2023 16:26
- Sala Mercurio (Hotel Ariston Paestum)

A Second ECFA Workshop on e+e- Higgs/EW/Top Factories, October 11-13, 2023, in Paestum (Salerno)

Optimizing the Higgs self-coupling measurement at ILC and CA3

Measuring the Higgs self-coupling is a key target for future \$e^(+)e^(-)\$ colliders and can be accessed through double

- 間 12 October 2023 14:20
- Sala Mercurio (Hotel Ariston Paestum)

Search for Invisible Decays of the Higgs Boson at the II C Using key4HEP

The Key4hep Stack

- Software provided in "stacks" deployed on cvmfs
- More than 500 packages (most are dependencies)
- Nightly builds in /cvmfs/sw-nightlies.hsf.org with the latest version of the key4hep packages and other packages. CentOS 7, AlmaLinux 9 and Ubuntu 22.04 supported
- Releases in /cvmfs/sw.hsf.org with tagged versions of the packages
- Easy setup with cvmfs:

source /cvmfs/sw-nightlies.hsf.org/key4hep/releases/setup.sh # Latest nightly
source /cvmfs/sw.hsf.org/key4hep/releases/setup.sh # Latest release

 Questions, problems, complaints and anything else related to packages happens in https://github.com/key4hep/key4hep-spack

New developments

Podio and EDM4hep

- Schema evolution: it is possible to modify our definitions in EDM4hep and still be able to read old data
- Schema evolution is working and has been added to podio, and by extension, to EDM4hep [T. Madlener and B. Hegner]
 - Renaming, adding a new member, removing a member is now possible
- New RNTuple backend to write RNTuples (experimental new format for ROOT files)
- Python bindings for EDM4hep

import edm4hep
particle = edm4hep.MCParticle() # default initialized particle
particle.getCharge() # 0.0

- Together with the podio bindings it is possible to read or generate data and save it to a file, all from python
- Few minor changes in the model itself \rightarrow very stable

Frame reading and writing in Key4hep

- The Frame (from podio) is a data container where collections can be stored
- Key feature: support for multithreading
- Typically represents an event but can be anything else
- A backend decides how it is written to a file (ROOT files with ROOT TTrees most of the time)
- Automatic Frame reading and writing was introduced to the key4hep Gaudi algorithms
 - Previously, files were being saved to an Event Store (didn't support multithreading)
 - Now, files produced are read and written as Frames
 - Changes were transparent; users didn't need to modify their code

Simple interface with get and put

frame.get("MCParticleCollection");
frame.put(std::move(coll), "NewCollection");

Also in python:

```
from podio.root_io import Reader
reader = Reader('myfile.root')
events = reader.get('events')
for frame in events:
    coll = frame.get('MCParticleCollection')
```

Integrations and native algorithms

- There is ongoing work on either native tools or integration with other tools
 - Integration with ACTS (L. Reichenbach)
 - Integration of the Pandora Particle Flow Algorithm (S. Sasikumar)
 - Digitisation algorithm in native key4hep (J.M. Carceller)
 - Overlay in native key4hep (Y. Khrabatyn, summer student at CERN)

LCIO Converters

- There has been an overhaul of the EDM4hep LCIO converters
 - Fixes some issues: associations were broken when using EDM4hep input in the conversion from LCIO to EDM4hep
- Current status
 - Marlin processors can be used in Gaudi using a 'MarlinProcessorWrapper'
 - EDM4hep input can be used and not worry about Marlin processors taking LCIO input and giving LCIO output
 - Standalone converter lcio2edm4hep to convert files

Detector and Reconstruction studies

- New detectors have been added recently to k4geo:
 - IDEA
 - ALLEGRO
 - CLD with the ARC subdetector
 - IDEA Vertex Detector
- See A. Tolosa's talk and A. Sailer's talk

The Key4hep stack

- Nightly builds now support CentOS 7, AlmaLinux 9 and Ubuntu 22.04 (previously it was only CentOS 7)
- Support for these three OSes will also extend to new releases
- Several recent fixes:
 - Graphic visualizations (Geant4, DD4hep) now work well in the nightlies
 - Nightly validation, broken nightlies are not deployed on cvmfs
 - Improvements in CI so that it is possible to rebuild a nightly at a certain point in time
 - New packages added to the stack

Key4hep Validation: Simulation and Reconstruction

- Check the simulation and reconstruction chain
- Run daily, use the latest key4hep nightlies
- Run a simulation with DD4hep, then reconstruction, then analysis scripts and then make plots
- Results are compared to a reference sample
- Plots are deployed to WebEOS (static webpage)
- https://key4hep-validation.web.cern.ch/
- Work in progress, no documentation yet

Key4hep Validation: Simulation and Reconstruction

Example of a plot using a release with a bug as the reference one

Key4hep Tutorial

- Key4hep tutorial on Tuesday
- Several topics covered
 - EDM4hep
 - LCIO EDM4hep converters
 - Algorithms in Key4hep using Gaudi
 - Plotting from files
- Documentation will be kept online https://github.com/key4hep/key4hep-tutorials
- Feel free to ask questions / report issues about the tutorials in person or by mail or github

Outlook: Functional algorithms

- One of the key features of the Frame is support for multithreading
- · Current algorithms don't typically work in a multithreaded environment
 - If there is internal state several threads could change it at the same time
- Functional algorithms is the recommended way in Gaudi
 - Algorithms can not modify an internal state
- Working with EDM4hep collections using functional algorithms is now possible

Summary

- Lots of progress in key4hep in different areas
- Many more improvements, impossible to list them all!
- More to come, expect more integrations and native algorithms in key4hep, as well as bug fixes and quality of life improvements
- Very wide community with people from different experiments
- Many thanks to all the developers, users and bug reporters!

Acknowledgements

- CERN Strategic R&D Programme on Technologies for Future Experiments (CERN-OPEN-2018-006)
- European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 101004761.

Backup

Key4hep Builds: Nightlies

- Nightlies were updated
- Two build types depending if the build is done from scratch or not
- Builds from scratch will get the latest packages and let us know that the changes in spack don't break our builds - Updates every O(weeks)
- Daily builds that use as upstream the builds from scratch, they only build the packages that have changed (or those that depend on a package that has changed)
- Three new hidden files in each release
 - .scratch: If it is there, it is a build from scratch (all packages)
 - .spack-commit: Which commit of spack was used to build this release
 - .key4hep-spack-commit: Which commit of key4hep-spack was used to build this release

Key4hep Builds: Tests

- New usability tests are being added: compilation, ROOT, python, python packages, whizard, key4hep tools
- These tests come from experience, mainly from what people use that one day doesn't work, to make sure it doesn't repeat

```
cat > ee.sin <<EOF
    process ee = e1, E1 => e2, E2
    sqrts = 360 GeV
    n_events = 10
    sample_format = lhef
    simulate (ee)
EOF
run_test "whizard test" "whizard -r ee.sin"
```

podio: RNTuple backend

TTree based	RNTuple based
<pre>ROOTFrameWriter writer(filename); writer.writeFrame(frame); writer.finish();</pre>	<pre>ROOTNTupleWriter writer(filename); writer.writeFrame(frame); writer.finish();</pre>
<pre>ROOTFrameReader reader{}; reader.openFile(filename) auto event = podio::Frame(reader.readEntry("events", 0));</pre>	<pre>ROOTNTupleReader reader{}; reader.openFile(filename) auto event = podio::Frame(reader.readEntry("events", 0));</pre>

- For the future:
 - Comparisons between the RNTuple and TTree-based backends: reading and writing speed, file size
 - Python bindings for the RNTuple writer and reader

Pandora

- Liquid Argon (LAr) detectors are being studied for future experiments (e.g. FCC)
- Swathi will study jet energy resolution for IDEA-LAr when a full simulation for IDEA is implemented

- Currently studying LAr with CLD (with full simulation)
- While adding the LAr calorimeter inside CLD overlaps were found so changes in the geometry had to be done
- Implementing a Gaudi algorithm to use Pandora PFA with Gaudi

Other improvements

- Many other small (or not) improvements
- Fixes and improvements in k4run in k4FWCore: #93, #110, #126, #131, #132, #143, #137, #138 and #140
- New packages added to the stack and / or nightlies (for example, opendatadetector) as requested
- Improvements in the documentation
- New tutorials

Functional algorithms in Key4hep

struct ExampleFunctionalConsumer final

```
: Gaudi::Functional::Consumer<void(const edm4hep::MCParticleCollection& input), BaseClass_t> {
    ExampleFunctionalConsumer(const std::string& name, ISvcLocator* svcLoc)
        : Consumer(name, svcLoc, KeyValue("InputCollection", "MCParticles")) {}
    void operator()(const edm4hep::MCParticleCollection& input) const override {
        // Do something with the input
    }
}:
```

example exctracted from k4FWCore