Strange-quark Tagging for Higgs and EW Physics

Caterina Vernieri on behalf of the <u>HtoSS group (twiki)</u> Valentina Cairo, Taikan Suehara, Loukas Gouskos, Matt Basso, John Alison, Yotam Soreq, Valerio Dao, Karsten Koeneke (ex officio)

October 11, 2023 Paestum, ECFA Workshop on e+e-

Stanford University U.S. DEPARTMENT OF ENERGY

Higgs at HL-LHC

ECFA Workshop · October 11, 2023 SLAC Caterina Vernieri ·

The High Luminosity era of LHC will dramatically expand the physics reach for **Higgs physics:**

 2-5% precision for many of the Higgs couplings

BUT much larger uncertainties on Z\gamma and charm and ~50% on the selfcoupling

Higgs at HL-LHC

SLAC Caterina Vernieri · ECFA Workshop · October 11, 2023

CERN-LPCC-2018-04

Light Yukawa out of reach in the LHC environment

Physics goals beyond HL-LHC:

1. Establish Yukawa couplings to light flavor \rightarrow precision & lumi 2. Search for invisible/exotic decays and new Higgs \rightarrow precision & lumi 3. Establish self-coupling \Rightarrow > 500 GeV e+e- operations

Higgs at e+e-

The Energy Frontier 2021 Snowmass Report

- ZH is dominant at 250 GeV
- Above 500 GeV
 - Hvv dominates
 - ttH opens up
 - HH accessible with ZHH

4

Caterina Vernieri · ECFA Workshop · October 11, 2023 SLAC

4

Beyond EFT, is there more?

Higgs to strange coupling is an appealing signature to probe new physics

Is the Higgs the source for all flavor?

An option, **Spontaneous Flavor Violation** New physics can couple in a strongly flavor dependent way if it is aligned in the down-type quark or up-type quark sectors

- It allows for large couplings of additional Higgs to $\overset{\Xi}{\prec}$ strange/light quarks
- No flavor-changing neutral currents •

P. Meade

1811.00017 1908.11376 2101.04119

s-tagging

Tagging strange is a challenging but not impossible task for future detectors at e+e-

SLAC Caterina Vernieri · ECFA Workshop · October 11, 2023 As b,c, and s jets contain at least one strange hadron Strange quarks mostly hadronize to prompt kaons which carry a large fraction of the jet momentum Strange hadron reconstruction:

Distinctive two-prong vertices topology

Jet flavour	Number of secondary vertices (excluding V^0 s)	Number of strange hadrons (e.g., K^{\pm} , $K^0_{L/S}$, and Λ^0)
Bottom	2	≥ 1
Charm	1	≥ 1
Strange	0	≥ 1
Light	0	0

2101.04119 2203.07535

s-tagging in the past

SLD at SLC (e+e- at the Z) measured asymmetry in $Z \rightarrow s\overline{s}$

PRL 85 (2000), 5059 SLAC-R-520

A Cherenkov Ring Imaging Detector combined with a drift chamber and vertex detector

- CRID only available for K[±] with p_T > 9 GeV with a selection efficiency (purity) of 48% (91.5%)
- K⁰_S efficiency (purity) of 24% (90.7 %)

Detectors at future e+e-

Stringent detector requirements from ZH reconstruction

similar strategies

- High granularity calorimetry
 - many designs

arXiv:2003.01116

Particle ID for s-tagging

Combining different strategies for optimal PID performance across a wide p_T range

1912.04601 e2019-900045-4

Particle ID for s-tagging

Combining different strategies for optimal PID performance across a wide p_T range

- dE/dx from silicon (< 5 GeV) and large gaseous tracking detectors (< 30 GeV)
- \cdot < 5 GeV, time-of-flight (i.e. 100 ps from ECAL)

SLAC Caterina Vernieri · ECFA Workshop · October 11, 2023

Strange tagging performance 1/2

IDEA-like detector and Particle cloud graph neural network (fast sim)

- Both TOF and dN/dx ($3\sigma < 30$ GeV) included as inputs
- No PID to PID with $dN/dx \rightarrow at$ fixed mistag, efficiency doubles

SLAC Caterina Vernieri · ECFA Workshop · October 11, 2023

PRD 101 056019 (2020) EPJ C 82 646 (2022) L. Gouskos @FCC week

10

Strange tagging performance 2/2

ILD-like detector with full simulation and Recurrent NN

- Includes PDG-based PID \rightarrow assuming perfect detector capability
- At 50% s-tag efficiency, 90% background rejection
- No PID to PID < 10 (30) GeV \rightarrow at fixed mistag, 1.5x (2x) efficiency

Caterina Vernieri · ECFA Workshop · SLAC October 11, 2023

11

Analysis strategy to target $H \rightarrow ss$

Exploit Z boson reconstruction in the ZH associated mode

- At 250 GeV the total Zh cross section can be extracted independently of the Higgs boson's detailed properties by counting events with an identified Z boson
- Looking at 0 or 2 leptons Z decay modes

arXiv:2203.07622 Gouskos @FCC week

Constraints on s-coupling

Compatible results for both FCC and ILC like analyses

- ILD combined limit of $\kappa_s < 6.74$ at 95% CL with 900/fb at 250 GeV (i.e. half dataset)
 - No PID worsen the results by 8%
- FCC for Z(vv) only sets a limit of $\kappa_s < 1.3$ at 95% CL with 5/ab at 250 GeV and 2 IPs

SLAC

arXiv:2203.07535 L. Gouskos @FCC week

Lesson learned and moving forward

- Neutral Hadron energy resolution
- dE/dx and dN/dx: powerful PID essential for H-strange coupling Timing resolution to be further investigated but less critical for s-tagging • RHIC for improved reconstruction of $K^{+/-}$ at high momentum (< 30 GeV)

Use $H \rightarrow ss$ to inform detector design, while monitoring other benchmarks' performance

14

Conclusions and next steps

- s-tagging & PID would allow for a complete exploration of the 2nd generation Yukawa couplings • First simulations with some assumptions on detector performance show promise to test κ_s
- Moving forward we want to:
 - i.e. BSM models predicting deviations in $h \rightarrow ss$, or $h \rightarrow cs$ higher center of mass energies still unexplored
- - map this into phenomenological targets • refine the analysis for $e^+e^- \rightarrow Zh$ with $h \rightarrow ss (Z \rightarrow X)$ at 240/250 GeV
- - study detector benchmarks:
 - the complementarity in momentum reach of charged hadron ID from dN/dx, dE/dx, ToF, RICH
 - reconstruction of in-flight decays, $K^{0}_{S} \rightarrow \pi^{+}\pi^{-}$
 - strangeness-tagging and s/sbar separation
 - Important to evaluate simultaneously other Higgs benchmarks

Join us! ECFA-WHF-FT-HSS email list self-subscription CERN e-group

Join us! Discussion session T. Suehara Oct 11, 2023, 11:30 AM

Thermal History of Universe

Naturalness

Fundamental or Composite?

Is it unique?

Caterina Vernieri (SLAC)

Snowmass Higgs report

Higgs Portal to Hidden Sectors?

Stability of Universe

Higgs **Physics**

Origin of EWSB?

CPV and Baryogenesis

Origin of masses?

Origin of Flavor?

17

How to enhance s-tagging capabilities

Fast Timing in or calorimetry

SLAC Caterina Vernieri · ECFA Workshop · October 11, 2023

Depending on the hadron energy, different technologies are available for $3\sigma \pi/K$ separation

Particle cloud represented as a graph

Jet representation: Particle cloud i.e. unordered set of particles Network architecture: Graph Neural Networks Particles: vertices of graph; interactions b/w particles: edges of graph Hierarchical learning approach: local \rightarrow global structures

PRD 101 056019 (2020) EPJ C 82 646 (2022)

Moving forward

Detectors design at lepton colliders

•

Detector designs at e+e- colliders are converging to very similar strategies

- Particle Flow reconstruction \rightarrow plays a big part in many designs •
- SiD like detector Compact all silicon detector •
- ILD like detector Larger detector with Silicon+TPC tracker •
 - Larger detector. Simulation and design work active in Europe / Japan ullet
 - IDEA detector Using dual readout calorimeter, under study at CEPC/FCC-ee

Caterina Vernieri

EF Workshop Restart - August 30, 2021

e/π separation with TR+dE/dx

 e/π separation via detection of transition radiation photons

Transition radiation is emitted when a highly relativistic charged particle with a Lorentz factor $\gamma > 10^3$ traverses boundaries between materials of different dielectric constants.

To achieve the best e/π separation, TR and dE/dx-based measurements are combined in a single likelihood function for a particle type.

ATLAS Twiki

Physics requirements for detectors

Precision challenges detectors

ZH process: Higgs recoil reconstructed from $Z \rightarrow \mu\mu$

- Drives requirement on charged track momentum and jet resolutions
- Sets need for high field magnets and high precision / low mass trackers
- Bunch time structure allows high precision trackers with very *low X0 at linear lepton colliders*

Particle Flow reconstruction

Higgs \rightarrow bb/cc decays: Flavor tagging & quark charge tagging at unprecedented level

- Drives requirement on charged track impact parameter resolution \rightarrow low mass trackers near IP
- <0.3% X0 per layer (ideally 0.1% X0) for vertex detector</p>
- Sensors will have to be less than 75 μ m thick with at least 5 μ m hit resolution (17-25 μ m pitch)

arXiv:2003.01116

Physics requirements for detectors

Precision challenges detectors

ZH process: Higgs recoil reconstructed from $Z \rightarrow \mu\mu$

- Drives requirement on charged track momentum and jet resolutions
- Sets need for high field magnets and high precision / low mass trackers
- Bunch time structure allows high precision trackers with very *low X0 at linear lepton colliders*

Particle Flow reconstruction

Higgs \rightarrow bb/cc decays: Flavor tagging & quark charge tagging at unprecedented level

- Drives requirement on charged track impact parameter resolution \rightarrow low mass trackers near IP
- <0.3% X0 per layer (ideally 0.1% X0) for vertex detector</p>
- Sensors will have to be less than 75 μ m thick with at least 5 μ m hit resolution (17-25 μ m pitch)

Need new generation of ultra low mass vertex detectors with dedicated sensor designs

arXiv:2003.01116

Light Yukawa ?

Caterina Vernieri

ECFA Workshop · Paestum · October 10, 2023

Why leptons?

- Initial state well defined (& polarization) \implies High-precision measurements •
- ullet

Caterina Vernieri

Higgs bosons appear in 1 in 100 events \rightarrow Clean experimental environment and less backgrounds, trigger-less readout

ECFA Workshop · Paestum · October 10, 2023

25

An example of complementarity

- couplings
- High energy collisions would be then required to study such new particles

arXiv:2203.07622

Pattern of deviations associated with a particular parameter point in a 2HDM model is quite different from a singlet model

2HDM with a 600 GeV mass scale and a singlet with a 2.8 TeV scalar. Both of these are clearly out of the direct search reach of circular e+e- Higgs factories despite having the precision to test them via Higgs

Various machines to consider

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{\mathrm{int}}$
			e^-/e^+	ab^{-1}
HL-LHC	pp	$14 { m TeV}$		6
ILC and C ³	ee	$250~{\rm GeV}$	$\pm 80/\pm 30$	2
c.o.m almost		$350~{ m GeV}$	$\pm 80/\pm 30$	0.2
similar		$500~{\rm GeV}$	$\pm 80/\pm 30$	4
		$1 { m TeV}$	$\pm 80/\pm 20$	8
CLIC	ee	$380~{ m GeV}$	$\pm 80/0$	1
CEPC	ee	M_Z		60
		$2M_W$		3.6
		$240~{\rm GeV}$		20
		$360~{\rm GeV}$		1
FCC-ee	ee	M_Z		150
		$2M_W$		10
		$240~{ m GeV}$		5
		$2 M_{top}$		1.5
muon-collider (higgs)	$\mu\mu$	$125~{\rm GeV}$		0.02

Caterina Vernieri

	Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{\mathrm{int}}$
				. e^{-}/e^{+}	ab^{-}
	HE-LHC	$_{\rm pp}$	$27 { m TeV}$		15
	FCC-hh	pp	$100 { m TeV}$		30
	LHeC	ep	$1.3 { m TeV}$		1
	FCC-eh		$3.5 { m TeV}$		2
	CLIC	ee	$1.5 { m TeV}$	$\pm 80/0$	2.5
			$3.0 { m TeV}$	$\pm 80/0$	5
	High energy muon-collider	$\mu\mu$	$3 { m TeV}$		1
			$10 { m TeV}$		10
Ξ					

Global fit results - from EF04

Solid has no exotic Higgs decays, the light fits the width

Caterina Vernieri

•

precision reach on effective couplings from SMEFT global fit MuC 3TeV 1 MuC 10TeV 10 MuC 125GeV_{0.02}+10TeV 10 CEPC Z₁₀₀/WW₆/240GeV₂₀ CEPC +360GeV₁ 80GeV $\begin{array}{|c|c|c|c|c|c|} \hline ILC +350GeV_{0.2} +500GeV_4 \\ \hline ILC +1TeV_8 & \bigtriangledown w/Giga-Z \\ \hline CLIC +1.5TeV_{2.5} \\ \hline CLIC +3TeV_5 \\ \hline \end{array}$ FCC +365GeV_{1.5} Z & WW denote Z-pole & WW threshold subscripts denote luminosity in ab⁻¹ 10⁻² 10⁻³ -GCs ⊴ 10⁻⁴ [⊣] 10^{−5} 10^{-6} δg_H^{WW} $\delta g_{H}^{\gamma\gamma}$ $\delta g_{H}^{Z\gamma}$ $\delta g_{1,Z}$ $\delta \kappa_{\gamma}$ λ_Z 10⁻² $\delta { m g}_{H}^{\mu\mu}$ δg_{H}^{cc} $\delta g_{H}^{ m bb}$ $\delta g_H^{\tau\tau}$ δΓ_Η 10⁻² 10⁻³ $\delta g^{ee}_{Z,R}$ $\delta g^{\mu\mu}_{Z,L}$ $\delta { m g}_{Z,R}^{\mu\mu}$ $\delta g^{\mu v}_W$ $\delta g_{Z,R}^{\tau\tau}$ δg_W^{ev} $\delta g_{Z,L}^{\tau\tau}$ $\delta g_W^{\tau v}$ Vff c 10⁻² 10^{-2} Souplings $\delta g^{bb}_{Z,R}$

Higgs-electron Yukawa

Electron Yukawa at FCC-ee with a dedicated 4 years run at the Higgs mass ке < 1.6 at 95% CL

SLAC Caterina Vernieri · ECFA Workshop · October 11, 2023 arxiv:2107.02686

