SECOND • ECFA • WORKSHOP

on ete Higgs / Electroweak / Top Factories

11-13 October 2023 Paestum / Salerno / Italy

Physics Landscape

Topics:

- Physics potential of future Higgs and electroweak/top factories
- Required precision (experimental and theoretical)
- EFT (global) interpretation of Higgs factory measurements.
- Reconstruction and simulation
- Software
- Detector R&D

Stefan Dittmaier universität freiburg

Disclaimer

- ▶ I'm not a model builder → talk not about fancy ideas or ideologies
- ► I'm a "precision phenomenologist" (mostly from the EW side)
- about this talk. (somewhat inspired by Gavin Salam's talk at "FCC Week 2023")
 - expresses (non-radical) expectations where the SM reaches its limits
 - elaborates on the physics case of future e⁺e⁻ colliders → precision at low/intermedate energies vs. multi-TeV energies
 - emphasis on precision and electroweak aspects
 - refer to upcoming talks about QCD, flavour physics, BSM models, ...
 - generally: very few answers, but helps to stimulate upcoming discussions

Table of contents

The big questions – what can future e⁺e⁻ colliders provide?

Mysteries within the SM – portals to new physics?

SM precision pushed to the extreme – feasibility?

Future collider – to be or not to be?

Table of contents

The big questions – what can future e⁺e⁻ colliders provide?

The big questions of particle physics in brief:

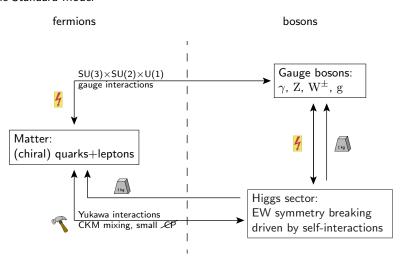
- Spectrum & properties of fundamental particles?
- Unification of forces?
- Origin of mass / mechanism of electroweak symmetry breaking?

- Limitations of the Standard Model (SM)?
- Nature & properties of neutrinos?
- Nature of Dark Matter?
- Sources of CP violation? (to explain matter-antimatter symmetry in the Universe)
- Nature of Dark Energy?

The big questions of particle physics in brief:

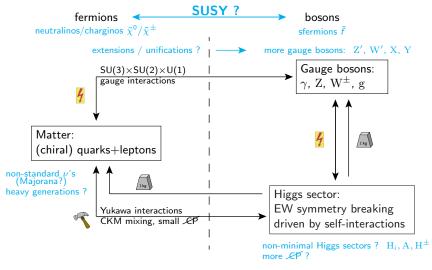
- Spectrum & properties of fundamental particles?
- Unification of forces?
- Origin of mass / mechanism of electroweak symmetry breaking?
- Limitations of the Standard Model (SM)?
- ► Nature & properties of neutrinos?
- Nature of Dark Matter?
- Sources of CP violation?
 (to explain matter-antimatter symmetry in the Universe)
- Nature of Dark Energy?

... require solutions outside the SM!


The big questions of particle physics in brief:

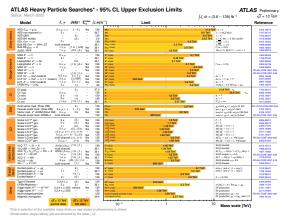
- Spectrum & properties of fundamental particles?
- Unification of forces?
- Origin of mass / mechanism of electroweak symmetry breaking?
- Limitations of the Standard Model (SM)?
- Nature & properties of neutrinos?
- Nature of Dark Matter?
- Sources of CP violation? (to explain matter-antimatter symmetry in the Universe)
- Nature of Dark Energy?

... require solutions outside the SM!


Which windows may be opened by future e⁺e⁻ colliders?

The Standard Model

The Standard Model and ideas for extensions


+ more exotic ideas (compositeness, extra dimensions, \dots)

Problem: No indication / evidence for new particles at the LHC!

Searches for heavy particles and their implications

Heavy-particle searches at ATLAS ...

Searches for heavy particles and their implications

SUSY-particle searches at ATLAS ...

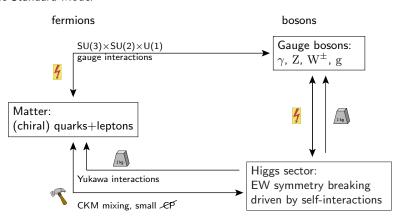
	Model	s	ignatur	e s	Cu le	1 Mass limit	Reference
,	44.4-46	0 r. p mono-jet	2-6 jets 1-3 jets	E_{T}^{min}	140 140	# [14 Ex Degen] 1.0 1.05 ng]; carder 1.0	2010.14293 2102.10876
Total Control	88.2-40 ¹⁷	0 +, μ	2-6 jets	$E_T^{\rm pin}$	140	2 22 eq ² () cday 2	2010 14293 2010 14293
	23.2-4285°	1 e.u	2-6 jets		140	E 22 militation	2101.01629
	£8.2-400000°	44,99	2 jets	Egrin	140	g 2.2 mg/j-resday	2204.13072
3	žž. ž→φ/#2X ²	0 e, p	7-11 jets 6 lets	E_T^{min}	140	2 1.97 eq() excder 2 1.55 eq(excder)	2008.06032 2307.01096
	gs.g→all ²	0-1 x,µ 59 x,µ	2.5 6 ints	E_T^{\min}	140	2 2.45 n(f)-300dw 2 1.25 n(f)-000dw	2211.08038 1909.08037
	6,6,	0 г. µ	2.5	Epin	140	5. 1255 articanous	2101.12527
	icis, is→st° → sst°	0 e, µ	64	gain Elin	140	\$ 0.60 10 Gen () To Gen () 10 Gen (2101.12527 1908.03122
act production		27	2.5 > 1 int	Egin Egin	140	F ₁ 0.13-0.85 an(f), f)=130 deV	2123.08189
줐	$t_1t_1, t_1 \rightarrow ck_1^0$ $t_1t_1, t_1 \rightarrow ck_1^0$	0-1 s.µ	2 lets/1 i-		140	\$ 1.25 m/C-1 two V V Foreigner 1.65 m/C-1 two V V V Foreigner 1.65 m/C-1 two V V V V V V V V V V V V V V V V V V V	2012.03798. ATLAS-CONF-2023-0
8	ητ ₁ , η→war ₁ ññ, ñ→thly, h→rĜ	1-2 r	2 jets/1 i-		140	Foreign 1.05 mysecond 7, Foreign 1.4 mysecond	2105.0786
ž	$\hat{b}\hat{b}_i, \hat{b} \rightarrow \hat{d}^0 / \hat{B}_i, \hat{t} \rightarrow \hat{d}^0$	0 4. μ	24	Elin Elin	36.1	v 0.05	1805-01649
В	$\hat{n}\hat{n}, \hat{n}\rightarrow \hat{n}^0, \hat{n}^0\rightarrow Z^{\prime\prime}\hat{n}^0$	1-2 r. u	mono-jet	Egin Egin	140	A 0.55 (0.007-0.19 (0.007-0.19)	2122.10876 2006.05880
	$nn_1, n \rightarrow ck_2^-, k_2^- \rightarrow Z/kk_1^-$ $\hat{\epsilon}_2\hat{\epsilon}_2, \hat{\epsilon}_2 \rightarrow \hat{\epsilon}_1 + Z$	34,0	10	Egin.	140	λ Forbidden 0.86 m/Γ ₂ -380 Set (εξ/2)-80 Set	2006-01480 2006-01480
	F ₁ F ₂ via WZ	Multiple //jet	2 ljet	Edin Er	140	8 8 0.96 mg/l/s, weeken 8 / / / 0.96 mg/l/s weeken 8 / / / 0.95 mg/l/s (and weeken werd weeken werd werd weeken werd werd werd werd werd werd werd werd	2106.01679, 2108.07686 1911.12806
hect	říří va WW	24.9		E_T^{min} E_T^{min}	140	ET 942 MET-4 WARREN	1908.08215
	FTF2 via Wil-	Multiple //jet		Erin	140	A ^a , R ^a Forbidden 1.06 mpl ^a)-70 tiet; wise sine	2004.10894, 2108.07586
	$\hat{x}_1^*\hat{x}_1^* \sin \hat{x}_2/\hat{x}$ $\hat{x}_2^*\hat{x}_2 + c\hat{x}_1^*$	21,0		Egrin Crain	140	2) 1.0 m/y-cap(/)-m/y * Parfect 0.36 0.46 m/y-cap(/)-m/y	1908.08215
	$t_{l,k}l_{l,k}, l\rightarrow tl_1^0$	20.0	0 lets	Egin Egin Elen	140	87 87	A7LAS-CCR9-2023-029 1908-08215
0		44,00	≥ i jet		140	7 0.26 ng/j-ng/j-12 day	1911.12406
	BB, B→IG/2G	0 e, p 4 e, p	2 3.b 0 iets	Edin Edin	140	8 0.56 890 - 2011	To appear 2123.11686
			2 large je	ts Elpin	140	8 0.45-0.93 890, 20-1	2108.07588
		$2 \sigma_{\nu} \mu$	≥ 2 jets	E_T^{\min}	140	$B = 0.27$ $BH(t_i^2 \rightarrow \Delta t) AB(t_i^2 \rightarrow \Delta t) a \Delta t$	2004.10070
	Direct FTFT prod., long-lived FT	Disapp. trk	1 jet	E_T^{\min}	140	8° 0.66 Pure titro	2201.02472 2201.02472
200	Stable / R-hadron	plant district		E_{τ}^{\min}	140	2.05	22/05/08/013
2	Metastable ji Rihadron, ji~qqi?	plant districts		Ellin	140	g (r(g) =10 mg) 2.2 mg/2=100 GeV	2205-06013
đ	ll, l→6G	Displ. lep		Egin	140	A.P 0.34 (4.7) = 0.146 (4.7) =	2011.07812
		pixel dE/dx		E_T^{\min}	140	9 0.36 H) = 10 ns	2206.06013
	$i!i!/i!^2$, $i! \rightarrow zz \rightarrow cc$	2×,µ			140	3°,15°, (89(25)-1, 89(25)-1) 0.625 1.05 Park No.	2011.10943
	$\hat{x}_1^*\hat{x}_1^*/\hat{x}_2^* \rightarrow ww/zeeeev$ $\hat{x}_1^*\hat{x}_{-1}$ $\hat{x}_2^*\rightarrow aaa$	44,0	0 jets >8 iets	Egrin	140	#\(\text{if}\) (4.4 \text{if}\) (4.5 \te	2123.11484 To appear
	$\hat{x}\hat{x}.\hat{x} \rightarrow qq\hat{x}_1.\hat{x}_1 \rightarrow qqq$ $B.I \rightarrow B^2.\hat{x}_2 \rightarrow ths$		Multiple		140	2 (mil) (mil	ATLAN CONF-2018-003
	$B_i \mapsto B_i , F_i \to Bi$ $B_i \mapsto B_i^* , E_i^* \to Bi$		2.6		140	2 Forbidden 636 melt judge davit beind beind davit beind beind davit beind beind davit beind beind davit beind bei	2010-01919
	$I_1I_2, I_3 \rightarrow bu$		2 jets + 2 i		36.7	F ₁ [eq. F ₂] 0.42 0.61	1710-07171
	$\hat{l}_1\hat{l}_1, \hat{l}_1 \rightarrow q\ell$	2 r. µ	2 à		36.1	7, De10c2 stell3=10c2 stell 10 14 895-14(107) 005-1	1710.09544 2023.11956
	$\hat{x}_{1}^{a}/\hat{x}_{2}^{b}/\hat{x}_{1}^{b}, \hat{\chi}_{1}^{b}, \hat{\chi}_{1}^{a}, \rightarrow \text{abs}, \hat{x}_{1}^{a} \rightarrow \text{abs}$	18.00	24 ints		140	C 0.2-0.22 Pur tiggins	7176 78678

S.Dittmaier Physics Landscape

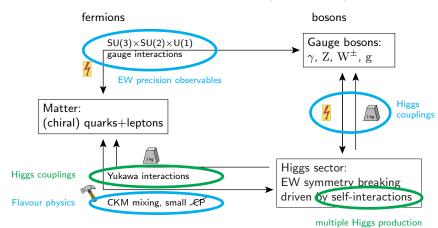
Searches for heavy particles and their implications

New particle(s) in the TeV mass range ...

- could not be directly investigated with a future e⁺e⁻ collider, but it would be very difficult to directly argue for FCC-hh
- excluded at the LHC only if coupling to SM not suppressed (no small mixings, heavy mediators, or other suppression mechanisms)
 - → weakly / feebly interacting particles of lower mass not ruled out


What to make out of this?

- ► The naysayer's nightmare: no new particle at the LHC, HL-LHC fully confirms SM completely, "everydone done", end of HEP.
 - \hookrightarrow This line of thought is wrong and damaging!
- New Physics ⇒ new particles ⇒ good physics but the converse is not true!
 - Good physics does not necessarily require new particles!
- ► HL-LHC will leave (some essential) questions open



The Standard Model

The Standard Model – establishing its dynamics (with precision)

SM challenged via precision \rightarrow pushed to the extreme by future e^+e^- collider,

sometimes e⁺e⁻ can make a qualitative difference

SM only established after detailed precision studies of all couplings!

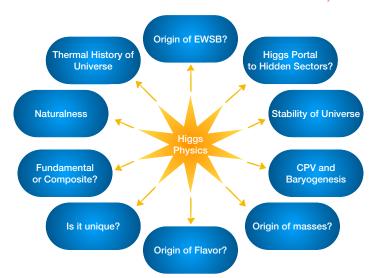


Table of contents

Mysteries within the SM – portals to new physics?

Snowmass 2021 US Community Study on the Future of Particle Physics

$$\mathcal{L}_{\mathrm{Higgs}} = |D\phi|^2 + (y_{jk}\overline{\psi}_j\psi_k\phi + \mathrm{h.c.}) - V(\phi^{\dagger}\phi)$$

$$\mathcal{L}_{\mathrm{Higgs}} = |D\phi|^2 + (y_{jk}\overline{\psi}_j\psi_k\phi + \mathrm{h.c.}) - V(\phi^\dagger\phi)$$
gauge interactions,
$$HWW/HZZ \text{ couplings}$$

$$\hookrightarrow \text{ well tested after LHC}$$

$$\mathcal{L}_{\mathrm{Higgs}} = \underbrace{|D\phi|^2}_{\mathrm{gauge interactions,}} + \underbrace{HWW/HZZ}_{\mathrm{couplings}} + \underbrace{WW/HZZ}_{\mathrm{couplings}}$$

$$\underbrace{\left(y_{jk}\overline{\psi}_{j}\psi_{k}\phi+\text{h.c.}\right)}_{-}V(\phi^{\dagger}\phi)$$

Yukawa interactions, $H\bar{f}f$, CKM matrix, \mathcal{LP} \hookrightarrow studied since ~ 2018

"5th force"

$$\mathcal{L}_{\mathrm{Higgs}} = \underbrace{\left| D\phi \right|^2}_{\mathrm{gauge interactions,}} + \underbrace{HWW/HZZ}_{\mathrm{couplings}}$$
 \hookrightarrow well tested after LHC

$$\underbrace{\left(y_{jk}\overline{\psi}_{j}\psi_{k}\phi+\text{h.c.}\right)}$$

Yukawa interactions. $H\bar{f}f$, CKM matrix, $\mathcal{L}P$ \hookrightarrow studied since ~ 2018

"5th force"

$$-\underbrace{V(\phi^{\dagger}\phi)}$$

Higgs potential, HHH/HHHH coupl. \hookrightarrow not yet tested

"6th force"

$$\mathcal{L}_{\mathrm{Higgs}} = |D\phi|^2 + \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{gauge interactions,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Yukawa interactions,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Yukawa interactions,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs potential,}} - \underbrace{ \left(y_{jk} \overline{\psi}_j \psi_k \phi + \mathrm{h.c.} \right) }_{\text{Higgs poten$$

Puzzles of the SM Higgs sector:

$$\mathcal{L}_{\mathrm{Higgs}} = |D\phi|^2 + \underbrace{(y_{jk}\overline{\psi}_{j}\psi_{k}\phi + \mathrm{h.c.})}_{\text{gauge interactions,}} - \underbrace{V(\phi^{\dagger}\phi)}_{\text{Higgs potential,}} + \underbrace{V_{ijk}\overline{\psi}_{j}\psi_{k}\phi + \mathrm{h.c.}}_{\text{Higgs potential,}} - \underbrace{V(\phi^{\dagger}\phi)}_{\text{Higgs potential,}} + \underbrace{HHH/HHHH}_{\text{Higgs potential,}}_{\text{Higgs potential,}} + \underbrace{HHH/HHHH}_{\text{Higgs potential,}}_{\text{Higgs potential,}}_{\text{Higgs potential,}} + \underbrace{HHH/HHHH}_{\text{Higgs potential,}}_{\text{Higgs potential,}}$$

Puzzles of the SM Higgs sector:

▶ Yukawa part $y_{jk}\overline{\psi}_i\psi_kH$:

flavour puzzle, no obvious symmetry, only source of CP

$$\mathcal{L}_{\mathrm{Higgs}} = |D\phi|^2 + \underbrace{(y_{jk}\overline{\psi}_j\psi_k\phi + \mathrm{h.c.})}_{\mathrm{gauge interactions,}} - \underbrace{V(\phi^\dagger\phi)}_{\mathrm{Higgs potential,}}$$

$$HWW/HZZ \text{ couplings} \hookrightarrow \text{ well tested after LHC}$$

$$+ \overline{f}_f \text{ CKM matrix, } \mathcal{LP} \hookrightarrow \text{ not yet tested}$$

$$+ \overline{f}_f \text{ orce}$$

Puzzles of the SM Higgs sector:

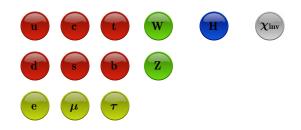
- ightharpoonup Yukawa part $y_{ik}\overline{\psi}_i\psi_kH$: flavour puzzle, no obvious symmetry, only source of CP
- Higgs potential $V = V_0 \mu^2 (v + H)^2 + \lambda (v + H)^4$:

$$ho ~ \mu^2 \propto M_{
m H}^2 \sim 10^4 \, {
m GeV}^2 ~ \ll ~ M_{
m Pl}^2 \sim 10^{36} \, {
m GeV}^2$$
 ,

hierarchy problem

$$\lambda(\mu_0) = 0 \text{ for } \mu_0 \sim 10^{10} \text{ GeV},$$

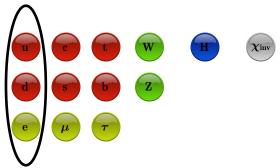
 $\lambda(M_{\rm Pl}) \sim -0.01$

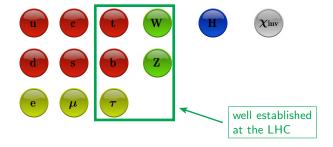

metastability of the Universe

$$V_{\rm min} = V_0 \underbrace{-\,\mu^2 v^2 + \lambda v^4}_{\sim\,-10^{45}\,{\rm J/m^3}} \sim \underbrace{\frac{\Lambda}{8\pi\,G} \sim 10^{-9}{\rm J/m^3}}_{\rm Dark\ Energy\ density},$$

Physics Landscape

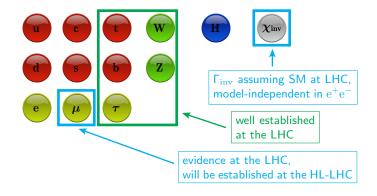
fine-tuning problem of cosmological constant A

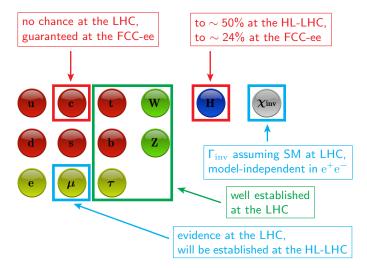


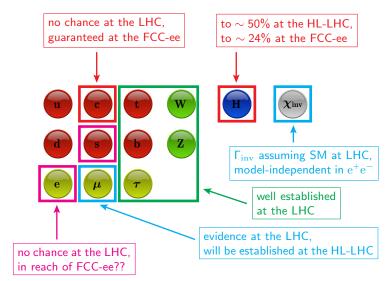


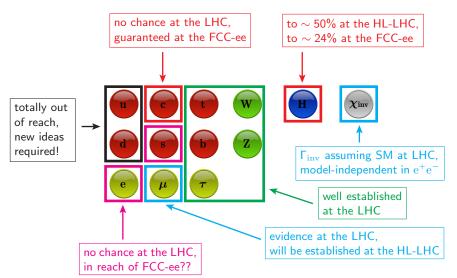
S.Dittmaier

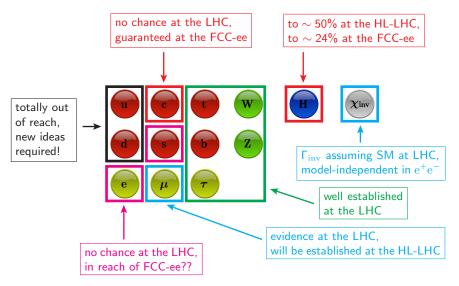
Higgs couplings to the "real world" yet unkown!

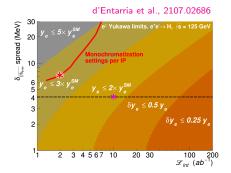





S.Dittmaier


S.Dittmaier





FCC-ee offers great opportunity to complete the Higgs profile!

Prospects for measuring the Hee coupling

- lacktriangledown dedicated run at $\sqrt{s}=M_{
 m H}$ after $\sqrt{s}=M_{
 m Z}$ and $\lesssim M_{
 m Z}+M_{
 m H}$
- most promising final states:

$$\begin{split} &H \to gg: \text{ gluon tagging!} \\ &(\varepsilon_g, \varepsilon_{q \to g}^{\mathrm{mistag}}) = (70\%, 1\%) \text{ assumed} \\ &H \to WW^* \to \ell\nu_\ell + 2\mathrm{jets:} \\ &\text{spin correlations exploited} \end{split}$$

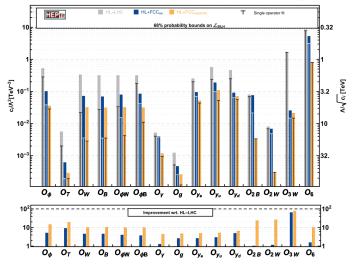
 $\begin{array}{c} \bullet \quad \text{essential: energy monochromatisation} \\ & \left(\delta_{\sqrt{s}} = 4.1\,\mathrm{MeV} \text{ assumed at } 10\,\mathrm{ab^{-1}}\right) \\ \hookrightarrow \quad \text{improvements?! (include polarization?)} \end{array}$

Prospects for measuring the HHH coupling de Blas et al., 1905,03764 Higgs@F September 2019 single-Higgs HL-LHC HL-LHC 50% (47%) HE-LHC HE-LHC FCC-ee/eh/hh LE-FCC LE-ECC FCC-eh FCC-ee/eh/hh -17+24% under HH threshold FCC-ee FCC-ee, ILC 36% (25%) 38% (27%) under HH threshold CEPC CEPC 49% (35%) CLIC CLIC, 49% (41%) 10 30 20 40 50 68% CL bounds on κ_3 [%]

- ▶ HH production not accessible for \sqrt{s} < 400 GeV (FCC-ee, CEPC) \hookrightarrow ILC / CLIC only e^+e^- colliders with HH production
- \triangleright λ_{HHH} via single-H production requires higher-order EFT studies Physics Landscape

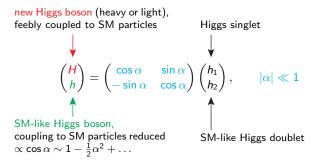
Side comments on Effective Theories (EFTs) and coupling modifiers

- \triangleright κ framework (rescaling Higgs couplings)
 - phenomenologically motivated reparametrization of data
 - not a measurement of Higgs couplings
 - resembles Higgs coupling strength only to $\sim 5\%$ level (EW corrs.)
 - projected precisions < 5% just reflect sensitivity of SM test</p>
- ► SM Effective Theory (SMEFT) (SM \oplus dim-6 operators $\mathcal{O}_{:}^{(6)}$)


Physics Landscape

- consistent theoretical framework
- restricted to energies $E \ll \Lambda = \text{scale of (decoupling) new physics}$
- does not cover SM extensions with feebly interacing particles
- good diagnostic tool to test SM (even if new physics is beyond SMEFT)
- ightharpoonup constraints on Wilson coefficients ightharpoonup windows to new physics scale Λ

$$\begin{array}{lll} \mathcal{L}_{\mathrm{SMEFT}} &=& \mathcal{L}_{\mathrm{SM}} \, + \, \sum_{i} \frac{c_{i}}{\Lambda^{2}} \, \mathcal{O}_{i}^{(6)} \, + \, \mathcal{O}(\Lambda^{-8}) \\ \left| \frac{c_{i}}{\Lambda^{2}} \right| \, < \, C_{\mathrm{exp}} & \Rightarrow \, \Lambda \, > \, \frac{|c_{i}|}{\sqrt{C_{\mathrm{exp}}}} & \quad \text{Higher precision (smaller C_{exp})} \\ & \Rightarrow \, \mathsf{larger} \, \Lambda ! \end{array}$$

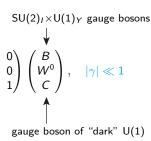

 $(|c_i| \text{ depends on expectation for new physics } \rightarrow \mathcal{O}(4\pi), \mathcal{O}(1), \mathcal{O}(\alpha_s/\pi), ...?)$

- ► FCC-ee: Λ already increased by $\sim 2-3$
- ► FCC-hh: ultimate increase by $\gtrsim 10$

Examples beyond SMEFT: feeble interactions from mixing with SM fields Higgs mixing:

 \Rightarrow Precision measurements of SM-like Higgs couplings constrain α

Examples beyond SMEFT: feeble interactions from mixing with SM fields


Neutral-gauge-boson mixing:

SM-like Z boson, coupling to SM particles reduced $\propto \cos \gamma \sim 1 - \frac{1}{2} \gamma^2 + \dots$

$$\begin{pmatrix} A \\ Z \\ Z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & \cos \gamma & \sin \gamma \\ 0 & -\sin \gamma & \cos \gamma \end{pmatrix} \begin{pmatrix} c_{\mathrm{W}} & -s_{\mathrm{W}} & 0 \\ s_{\mathrm{W}} & c_{\mathrm{W}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} B \\ W^{0} \\ C \end{pmatrix}, \quad |\gamma| \ll 1$$

new Z' boson (heavy or light), feebly coupled to SM particles

 \Rightarrow EW precision observables constrain γ

Examples beyond SMEFT: feeble interactions from mixing with SM fields

Neutral-lepton mixing: (only schematically)

SM-like neutrinos.

coupling to SM particles reduced

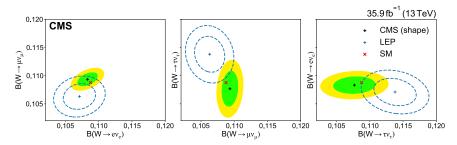
coupling to SM particles reduced
$$\propto \cos\theta_k \sim 1 - \frac{1}{2}\theta_k^2 + \dots$$
 (part of SU(2)_I doublets)
$$\begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ N_1 \\ \vdots \end{pmatrix} = \begin{pmatrix} PMNS-like \\ 3\times 3 \text{ matrix} \\ -\theta_1^* - \theta_2^* - \theta_3^* & 1 - \frac{1}{2}\theta_1^2 + \dots \end{pmatrix} \begin{pmatrix} \nu_e^L \\ \nu_\mu^L \\ \nu_\tau^L \\ \nu_\tau^L \\ N_1^R \\ \vdots \end{pmatrix}, \quad |\theta_k| \ll 1$$
 heavy neutral leptons, feebly coupled to SM particles

left-handed neutrino fields (part of SU(2), doublets)

$$egin{array}{c} igvee_{\mathrm{e}} \ igvee_{\mathrm{e}}^{\mathrm{L}} \
u_{\mu}^{\mathrm{L}} \
u_{ au}^{\mathrm{L}} \
u_{ au}^{\mathrm{L}} \
u_{ au}^{\mathrm{R}} \
N_{1}^{\mathrm{R}} \
\vdots \end{pmatrix}, \quad | heta_{k}| \ll 1$$

sterile right-handed neutrino fields

 \Rightarrow EW precision observables help to constrain θ_k


Typically in type-1 seesaw:

 $\theta_k \propto \frac{y_{\nu,k}v_{\rm EW}}{M}$ related to mass scale M of sterile neutrinos

New ATLAS/CMS analyses helping to constrain neutral-lepton mixing:

W-boson branching ratios (mostly from $t\bar{t}$ events)

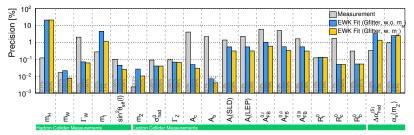
 \hookrightarrow tension in LEP results not confirmed

Table of contents

The big questions – what can future e⁺e⁻ colliders provide?

Mysteries within the SM – portals to new physics?

SM precision pushed to the extreme – feasibility?


Future collider – to be or not to be?

S.Dittmaier

Status of (not only) EW precision physics in the (pre HL-)LHC era

Erler, Schott '19

typically $\lesssim 1\%$, even $\sim 0.01-0.1\%$ in some cases Current precision:

Future projections: promise improvements by 1-2 orders of magnitude

 \hookrightarrow ultimate challenge of the SM at future e^+e^- colliders

But: Can theory provide adequate predictions?

Physics at the Z pole – central EW precision (pseudo-)observables

FCC-ee: Freitas et al., 1906.05379; ILC: Moortgat-Pick et al., 1504.01726

	experimental accuracy			intrinsic theory uncertainty			
	current	ILC	FCC-ee	current	current source	prospect	
$\Delta M_{ m Z} [{ m MeV}]$	2.1	_	0.1				
$\Delta\Gamma_{\rm Z}[{ m MeV}]$	2.3	1	0.1	0.4	$\alpha^3, \alpha^2 \alpha_{\rm s}, \alpha \alpha_{\rm s}^2$	0.15	
$\Delta \sin^2 heta_{ m eff}^\ell [10^{-5}]$	23	1.3	0.6	4.5	$lpha^3, lpha^2 lpha_{ m s}$	1.5	
$\Delta R_{ m b}[10^{-5}]$	66	14	6	11	$lpha^3, lpha^2 lpha_{ m s}$	5	
$\Delta R_\ell [10^{-3}]$	25	3	1	6	$lpha^3, lpha^2 lpha_{ m s}$	1.5	

Theory requirements for Z-pole pseudo-observables:

- needed.
 - ♦ EW and QCD–EW 3-loop calculations
 - \diamond 1 \rightarrow 2 decays, fully inclusive
- problems:
 - \diamond technical: massive multi-loop integrals, γ_5
 - ♦ conceptual: pseudo-obs. on the complex Z-pole

Physics at the Z pole - central EW precision (pseudo-)observables

FCC-ee: Freitas et al., 1906.05379: ILC: Moortgat-Pick et al., 1504.01726

	experimental		accuracy	intrinsic th. unc.		parametr	ic unc.
	current	ILC	FCC-ee	current	prospect	prospect	source
$\Delta M_{ m Z} [{ m MeV}]$	2.1	_	0.1				
$\Delta\Gamma_{\rm Z}[{ m MeV}]$	2.3	1	0.1	0.4	0.15	0.1	$lpha_{ m s}$
$\Delta \sin^2 heta_{ m eff}^\ell [10^{-5}]$	23	1.3	0.6	4.5	1.5	2(1)	$\Delta lpha_{ m had}$
$\Delta R_{ m b}[10^{-5}]$	66	14	6	11	5	1	$lpha_{ m s}$
$\Delta R_{\ell}[10^{-3}]$	25	3	1	6	1.5	1.3	$lpha_{ m s}$

Parametric uncertainties of EW pseudo-observables:

- ► QCD:
 - \diamond most important: $\delta \alpha_{\rm s} \sim 0.00015$ @ FCC-ee? $\hookrightarrow \alpha_s$ from EW POs competitive \Rightarrow cross-check with other results! \diamond quark masses $m_{\rm t}$, $m_{\rm b}$, $m_{\rm c}$
- ▶ $\Delta \alpha_{\rm had}$: $\delta(\Delta \alpha_{\rm had}) \sim 5(3) \times 10^{-5}$ for/from FCC-ee?
 - \diamond new exp. results from BES III / Belle II on $e^+e^- \to {\rm hadrons}$
 - \diamond $\Delta \alpha_{\rm had}$ from fit to radiative return $e^+e^- \to \gamma + {\rm hadrons}$

Physics Landscape

▶ other EW parameters: $M_{\rm Z}$, $M_{\rm W}$, $M_{\rm H}$ less critical (improved at ILC/FCC-ee)

Physics at the Z pole – central EW precision (pseudo-)observables

FCC-ee: Freitas et al., 1906.05379; ILC: Moortgat-Pick et al., 1504.01726

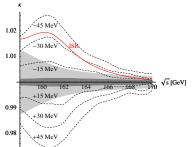
i cc-ee. Tieltas	FCC-ee. Freitas et al., 1900.05379, FEC. Moortgat-Fick et al., 1504.01720							
	experim	nental	accuracy	intrinsio	th. unc.	parametr	ic unc.	
	current	ILC	FCC-ee	current	prospect	prospect	source	
$\Delta M_{ m Z} [{ m MeV}]$	2.1	_	0.1					
$\Delta\Gamma_{\rm Z}[{ m MeV}]$	2.3	1	0.1	0.4	0.15	0.1	$lpha_{ m s}$	
$\Delta \sin^2 heta_{ m eff}^\ell [10^{-5}]$	23	1.3	0.6	4.5	1.5	2(1)	$\alpha_{ m had}$	
$\Delta R_{ m b}[10^{-5}]$	66	14	6	11	c		$\alpha_{ m s}$	
$\Delta R_{\ell}[10^{-3}]$	25	3	Theory C	hallenge	5		$\chi_{\mathbf{s}}$	
Parametric Parametric QCD: mos value Angle 10 - 3 25								

 \triangleright other EW parameters: $M_{\rm Z}$, $M_{\rm W}$, $M_{\rm H}$ less critical (improved at ILC/FCC-ee)

W-boson mass measurements vs. prediction from μ decay

FCC-ee: Freitas et al., 1906.05379 ILC: Baak et al., 1310.6708

	experimental accuracy								
		$\sigma_{ m WW}$ @ threshold			intrinsic			parametric	
	current	LEP2	ILC	FCC-ee	current	source	prospect	prospect	source
$\Delta M_{ m W} [{ m MeV}]$	13	200	3-6	0.5 - 1	3	$\alpha^3, \alpha^2 \alpha_{\rm s}$	1	1(0.6)	$\Delta \alpha_{ m had}$
	,				•				

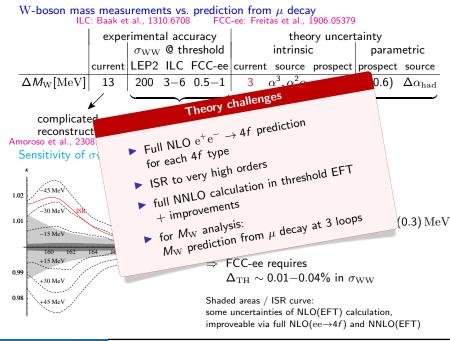

complicated reconstructions

basically counting experiments

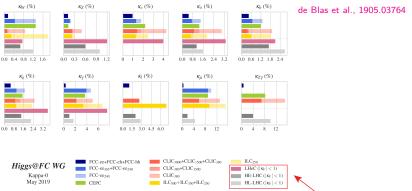
 $M_{\rm W}$ calculated from μ decay

Amoroso et al., 2308.09417

Sensitivity of σ_{WW} to M_{W} : Beneke et al. '07



$$\kappa = \frac{\sigma_{\rm WW}(s, M_{\rm W} + \delta M_{\rm W})}{\sigma_{\rm WW}(s, M_{\rm W})}$$


$$\Delta\kappa=0.1\%$$
 (0.02%) $\leftrightarrow~\delta M_{\rm W}=1.5$ (0.3) ${
m MeV}$ for $\sqrt{s}=161\,{
m GeV}$

$$\Rightarrow$$
 FCC-ee requires $\Delta_{\mathrm{TH}} \sim 0.01{-}0.04\%$ in σ_{WW}

Shaded areas / ISR curve: some uncertainties of NLO(EFT) calculation, improveable via full NLO($ee \rightarrow 4f$) and NNLO(EFT)

Higgs couplings analyses at present and future colliders

- Many different assumptions in different analyses! Read fine-print! Important details: $\Gamma_{\rm H,BSM}=0$? $|\kappa_{\rm W}|, |\kappa_{\rm Z}| \leq 1$? $\kappa_{\gamma}, \kappa_{\rm g}$ independent?
- Theory limitations!

H couplings \neq free parameters, rescaled model \neq consistent field theory

- \hookrightarrow QCD corrections often ok, but EW corrections ($\sim 5\%$) inconsistent!
- \hookrightarrow Coupling rescalings (e.g. κ framework) uncertain to $\sim 5\%!$
- ⇒ Use EFT like SMEFT (with corrections)!

Higgs decay widths and Higgs couplings at ILC and FCC-ee

LHC HXS WG; de Blas et al., 1905.03764; HL-LHC: Cepeda et al., 1902.00134; ILC: Bambade et al., 1903.01629 FCC-ee: Freitas et al., 1906.05379

	experimental accuracy			the	eory uncerta	param.	unc.	
	HL-LHC	ILC250	FCC-ee	current		prospect	prospect	source
$H \to b\bar{b}$	4.4%	2%	0.8%	0.4%	$lpha_{ m s}^{ m 5}$	0.2%	0.6%	$m_{ m b}$
${\rm H} \to \tau\tau$	2.9%	2.4%	1.1%	0.3%	α^2	0.1%	neglig	ible
$H \to \mu\mu$	8.2%	8%	12%	0.3%	α^2	0.1%	neglig	ible
${\rm H} \to {\rm gg}$	1.6% (prod.)	3.2%	1.6%	3.2%	$lpha_{ m s}^{ extsf{4}}$	1%	0.5%	$lpha_{ m s}$
${ m H} o \gamma \gamma$	2.6%	2.2%	3.0%	1%	α^2	1%	neglig	ible
$H \to \gamma Z$	19%			5%	α	1%	0.1%	$M_{ m H}$
$\mathrm{H} \to \mathrm{WW}$	2.8%	1.1%	0.4%	0.5%	$\alpha_{\rm s}^2, \alpha_{\rm s} \alpha, \alpha^2$	0.3%	0.1%	$M_{ m H}$
$\mathrm{H} \to \mathrm{ZZ}$	2.9%	1.1%	0.3%	0.5%	$\alpha_{\rm s}^2, \alpha_{\rm s}\alpha, \alpha^2$	0.3%	0.1%	$M_{ m H}$

Note: e^+e^- colliders from $\sigma_{e^+e^-\to ZH}$ with *inclusive* Higgs decays!

⇒ Absolute normalization of Higgs BRs

Higgs decay widths and Higgs couplings at ILC and FCC-ee

LHC HXS WG; de Blas et al., 1905.03764; HL-LHC: Cepeda et al., 1902.00134; ILC: Bambade et al., 1903.01629 FCC-ee: Freitas et al., 1906.05379

Physics Landscape

	experimental accuracy	param. unc.
	HL-LHC ILC250 Theory challenges	prospect source
$\mathrm{H} ightarrow \mathrm{b} \mathrm{ar{b}}$	assiculations	0.6% m _b
${\rm H} \to \tau\tau$	massive EW 2-loop caslculations ZH ,	negligible
$H \to \mu\mu$	massive EV ZH , for $e^+e^- \rightarrow ZH$,	negligible
${\rm H} \to {\rm gg}$	1.0	0.5% $\alpha_{ m s}$
${\rm H} \rightarrow \gamma \gamma$	2. $4-/5-loop$ $gg,$ for $H \to b\bar{b}, gg,$	negligible
${\rm H} \to \gamma {\rm Z}$		1% M _H
$\mathrm{H} \rightarrow \mathrm{WW}$	for H → DD, Sec alculations 2.8 off-shell NLO calculations if Higgs boson not fully reconstructible 2.9 EFT calculations with radiative corrections ∴ Sith in a function of the second of the sec	1% M _H
$\mathrm{H} \to \mathrm{ZZ}$	2.9 if Higgs Laulations with radiative	0.1% $M_{\rm H}$
	EFT calculation	
Note: e^+e^-	${ m e^-}$ collidate ${ m ce^+e^-}_{ m e^+e^-}_{ m ZH}$ with <i>inclusive</i> Higgs decays!	

⇒ Absolute normalization of Higgs BRs

Enormous challenges for theory!

Can theory provide adequate predictions?

My expectation: Yes.

... anticipating progress + support for young theorists

Table of contents

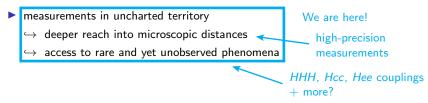
The big questions – what can future e⁺e⁻ colliders provide?

Mysteries within the SM – portals to new physics?

SM precision pushed to the extreme – feasibility?

Future collider – to be or not to be?

The case for a future e⁺e⁻ collider?

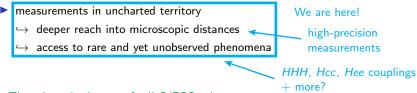

Scenarios for new colliders:

- deeper exploration of a newly discovered phenomenon/particle
 - \hookrightarrow Z/W physics at LEP after W/Z discoveries at SPS
- no-lose theorem by theory arguments (new particle/phenomenon ahead)
 - \hookrightarrow Higgs boson or new phenomenon at the LHC
- measurements in uncharted territory
 - → deeper reach into microscopic distances
 - → access to rare and yet unobserved phenomena

The case for a future e⁺e⁻ collider?

Scenarios for new colliders:

- deeper exploration of a newly discovered phenomenon/particle
 - \hookrightarrow Z/W physics at LEP after W/Z discoveries at SPS
- ▶ no-lose theorem by theory arguments (new particle/phenomenon ahead)
 - \hookrightarrow Higgs boson or new phenomenon at the LHC



The case for a future e⁺e⁻ collider?

Scenarios for new colliders:

- deeper exploration of a newly discovered phenomenon/particle
 - \hookrightarrow Z/W physics at LEP after W/Z discoveries at SPS
- no-lose theorem by theory arguments (new particle/phenomenon ahead)
 - → Higgs boson or new phenomenon at the LHC

⇒ There is a physics case for ILC/FCC-ee!

The case for a future e^+e^- collider?

Scenarios for new colliders:

- deeper exploration of a newly discovered phenomenon/particle
 - \hookrightarrow Z/W physics at LEP after W/Z discoveries at SPS
- no-lose theorem by theory arguments (new particle/phenomenon ahead)
 - → Higgs boson or new phenomenon at the LHC
- measurements in uncharted territory We are here! deeper reach into microscopic distances high-precision access to rare and yet unobserved phenomena measurements HHH, Hcc, Hee couplings + more?
- ⇒ There is a physics case for ILC/FCC-ee!
 - + long-term plan for FCC-hh at the high-energy frontier

The case for a future e^+e^- collider?

Scenarios for new colliders:

- deeper exploration of a newly discovered phenomenon/particle
 - \hookrightarrow Z/W physics at LEP after W/Z discoveries at SPS
- no-lose theorem by theory arguments (new particle/phenomenon ahead)
 - → Higgs boson or new phenomenon at the LHC
- measurements in uncharted territory deeper reach into microscopic distances access to rare and yet unobserved phenomena

high-precision measurements

We are here!

HHH, Hcc, Hee couplings + more?

- ⇒ There is a physics case for ILC/FCC-ee!
 - + long-term plan for FCC-hh at the high-energy frontier

The problem are the scales in costs + resources + time + serious problems of humanity (environmental, political, existential) ...

Physics vision meets reality

- technical realizability: unforeseen cost explosions, showstoppers?
- economic problems: energy consumption
- ⇒ Problems/concerns have to be taken seriously!
 - enter open discussions
 - work on solutions
 - ... and don't sell the physics case under price!

Unique selling points of high-energy physics

- ▶ fundamental research → cultural asset
- What are we made of? What rules the microcosm and the universe? ... → new collider = only known path to unambiguously identify new particles
 - role model for collaborative effort
 - one big effort over many small (redundant) experiments/laboratories
 - masterstroke in management (riddle for managers in economy)
 - sociological success of non-profit driven international collaborations
 - pioneering roles in technology
 - "open-source attitude" (including the www development)
 - technical data analysis, ML/AI (lost against google et al.?)
 - technical spin-offs for industry
 - educational aspects
 - ▶ fundamental physics research → magnet in academic education
 - ▶ ideal educational platform for many academic + non-academic (!) areas
 - eduction = key to a better worldwide society!
- ⇒ High-energy physics can be more than a "bubble" in the worldwide society?!

... about selling strategies

Maybe we could have done better?!

"If you want to buy a car, would you buy the Standard Model? - No." (Hans Kühn, a multi-loop pioneer)

... about selling strategies

Maybe we could have done better?!

"If you want to buy a car, would you buy the Standard Model? - No." (Hans Kühn, a multi-loop pioneer)

Car manufacturers have abandoned this name more than 100 years ago!

Standard's first entry into the Light Car Market and introduction to Mass

(http://www.standardregister.co.uk/id16.html)

... about selling strategies

Maybe we could have done better?!

"If you want to buy a car, would you buy the Standard Model? — No."

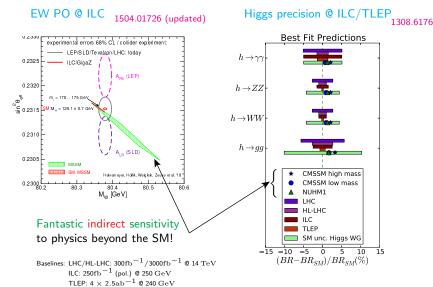
(Hans Kühn, a multi-loop pioneer)

Car manufacturers have abandoned this name more than 100 years ago!

Standard Model 'S' (1913 - 1918)

Standard's first entry into the Light Car Market and introduction to Mass

(http://www.standardregister.co.uk/id16.html)


Conclusions?

- Standard Model = beautiful?
- Better namings?! After all, the Higgs boson WAS "new physics".
- Sell new aspects as NEW!

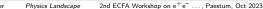
Extra slides

Typical prospects for future high-precision e⁺e⁻ EW physics

Experimental errors and theory uncertainties

Experimental errors:

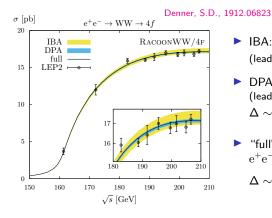
```
systematic errors \left.\begin{array}{l} \to \text{ LHC status} + \text{projections to HL/HE-LHC, ILC, FCC-ee} \\ = \text{input in the following} \end{array}\right.
```


Theory uncertainties in predictions:

- ▶ Intrinsic uncertainties due to missing higher-order corrections, estimated from
 - generic scaling of higher order via coupling factors
 - renormalization and factorization scale variations
 - \blacktriangleright tower of known corrections, e.g. $\Delta_{\rm NNLO} \sim \delta_{\rm NLO}^2$ if $\delta_{\rm NLO}$ known
 - ▶ different variants to include/resum leading higher-order effects
- Parametric uncertainties due to errors in input parameters, induced by
 - experimental errors in measurements
 - theory uncertainties in analyses

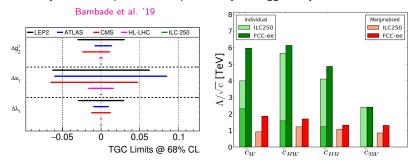
Note:

Estimates of theory uncertainties often (too) optimistic in projections of exp. results...



Homework for theory @ Z pole:

- ► Full line-shape prediction to NNLO EW + leading effects beyond
 - technical progress in 2- and multi-loop amplitudes/integrals
 - conceptual progress in NNLO EW corrections (unstable particles!)
 - ▶ improvements on leading ISR corrections beyond NNLO
 - leading EW corrections beyond NNLO
- ► Validity of pseudo-observable approach
 - better field-theoretical foundation of Z-pole pseudo-observables (complex pole definition, absorptive parts, continuum subtraction)
 - Improved Born Approximation (IBA)
 to parametrize line-shape via pseudo-obs.
 (+ precise concept to treat non-resonant parts)
 - ightharpoonup careful validation of IBA against full $e^+e^- o Z/\gamma o f\bar{f}$ prediction


WW cross-section predictions for $\sqrt{s} \lesssim 500 \, \mathrm{GeV}$

- ▶ IBA: $\Delta \sim 2\%$ (also by GENTLE) (leading-log ISR + universal EW corrs.)
- DPA = "Double-Pole Approximation": (leading term of resonance expansion) $\Delta \sim 0.5\%$ above threshold RacoonWW, **YFSWW**
- "full" = full NLO prediction for $e^+e^- \rightarrow 4f$ via charged current Denner et al. '05 $\Delta \sim 0.5\%$ everywhere

Triple-gauge couplings (TGC) analyses in $e^+e^- \rightarrow WW$

- ▶ e⁺e[−] is ideal framework: no formfactors for damping required!
- SMEFT framework: sensitivity to dim-6 operators complementary to Higgs analyses
 Ellis, You '15

Impact of $\Delta \kappa_{\gamma}$ on $\mathrm{d}\sigma_{\mathrm{WW}}$:	$\sqrt{s}/{\rm GeV}$	200	250	500
	$\Delta \kappa_{\gamma}$	0.05	0.004	0.001
$\mathrm{d}\sigma_{\mathrm{WW}}(\kappa_{\gamma})$	$/\mathrm{d}\sigma_{\mathrm{WW}}^{\mathrm{SM}}-1$	3%	$\sim 0.5\%$	$\sim 0.5\%$

 \hookrightarrow SM precision limits reach in TGCs for moderate \sqrt{s} !

Theory homework for high-precision W-boson physics

- Exclusive analyses & predictions for $e^+e^- \rightarrow 4f$:
 - ightharpoonup e $^{\pm}$ final states: proper treatment / separation of single-W channels
 - ► Hadronic final states: separation of multi-jet events (2j,3j,4j,...)
 - ► Full NLO $e^+e^- \rightarrow 4f$ prediction for each 4f type (interferences with ZZ and forward- e^{\pm} channels)
 - more leading corrections beyond NLO
- $ightharpoonup \sigma_{WW}$ in threshold region:
 - ► full NNLO EFT calculation (only leading terms available)
 - leading 3-loop Coulomb-enhanced EFT corrections
 - ightharpoonup matching of all fixed-order $e^+e^- \rightarrow 4f$ and threshold-EFT ingredients
 - - $\Delta \sim 0.01 0.04\%$ for $\sigma_{\rm WW}$ @ threshold Freitas et al., 1906.05379
- For $M_{\rm W}$ analysis: Improved $M_{\rm W}$ prediction from μ decay
 - massive 3-loop computations (vacuum graphs, self-energies)

Theory homework for high-precision Higgs physics

- ▶ Higgs off-shell effects: $\Gamma_{\rm H}/M_{\rm H} \sim 0.00003$ (compare: $\Gamma_{\rm Z}/M_{\rm Z} \sim 0.03$)
 - ightharpoonup if Higgs fully reconstructable \rightarrow isolation of Higgs pole via cuts
 - ← factorization of XS into production and decay parts
 (straightforward check at LO and NLO)
 - if Higgs not fully reconstructable (e.g. $H \to WW \to 2\ell 2\nu$)
- ► Multi-loop vertex corrections:
 - massive 2-loop vertex corrections (NNLO EW)
 - ightharpoonup massless multi-loop corrections (4-/5-loop QCD for $H o b\bar{b}/gg$)
- ▶ 2-loop corrections for $e^+e^- \to ZH, \nu\bar{\nu}H$:
 - ightharpoonup full NNI O calculation for σ_{ZH}
 - leading NNLO effects for $\sigma_{\nu\bar{\nu}\rm H}$
- Physics beyond the SM:
 - model independent: EFT approaches with higher-order corrections
 - specific models: full NLO studies (+beyond if relevant)

Physics Landscape

⇒ Major effort, but feasible!