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The underlying challenges in a nutshell…

3

FIG. 1 Schematic relationships between the topics discussed in this Colloquium. The diagram emphasizes the close connections
between theory, computations (both computational science and data science as well as many elements from computer science)
and experiments.

and the synthesis of the elements in the Cosmos, see
Fig. 1. Experiments produce data volumes that range in
complexity and heterogeneity, thereby posing enormous
challenges to their design, their execution, and the sta-
tistical data analysis.

Theoretical modeling of nuclear properties is, in most
physical cases of interest, limited by the large amount of
degrees of freedom in quantum-mechanical calculations.
The analysis of experimental data and the theoretical
modeling of nuclear systems aims, as is the case in all
fields of physics, at uncovering the basic laws of motion
in order to make predictions and estimations, as well as
finding correlations and causations for strongly interact-
ing matter. The broad aims of nuclear physics as a field
correspond to a highly distributed scientific enterprise.
Experimental e↵orts utilize many laboratories worldwide,
each with unique operation, data acquisition, and anal-
ysis methods. Similarly, the scales of focus spanned in
theoretical nuclear physics lead to broad needs for algo-
rithmic methods and uncertainty quantification. These
e↵orts, utilizing arrays of data types across size and en-
ergy scales, create an ideal environment for applications
of ML methods.

II. MACHINE LEARNING FOR NUCLEAR PHYSICS IN
BROAD STROKES

Statistics, data science, and ML form important fields
of research in modern science. They describe how to
learn and make predictions from data, and enable the

extraction of key information about physical processes
and the underlying scientific laws based on large datasets.
As such, recent advances in ML capabilities are being
applied to advance scientific discoveries in the physical
sciences (Carleo et al., 2019; Deiana et al., 2021).

Ideally, ML represents the science of building models
to perform a task without the instructions being explic-
itly programmed. This approach introduces in practice
a hierarchy of mathematical operations that enable the
computer to learn complicated concepts by building them
out of simpler ones. In terms of a graphical representa-
tion, this can be visualized as a deep network of training
and learning operations, often just referred to as deep
learning (Goodfellow et al., 2016).

There exist many ML approaches; they are often split
into two main categories, supervised and unsupervised.
In supervised learning, training data are labeled and one
lets a specific ML algorithm learn and deduce patterns
in the datasets.

This allows one to make predictions about future
events and/or data not included in the training set. On
the other hand, unsupervised learning is a method for
finding patterns and relationship in datasets without any
prior knowledge of the system. Many researchers also op-
erate with a third category, dubbed reinforcement learn-
ing. This is a paradigm of learning inspired by behav-
ioral psychology, where actions are learned to maximize
reward. One may encounter reinforcement learning being
accompanied by supervised deep learning methods such
as deep ANN. Furthermore, what is often referred to as



The underlying challenges in a nutshell…

3

FIG. 1 Schematic relationships between the topics discussed in this Colloquium. The diagram emphasizes the close connections
between theory, computations (both computational science and data science as well as many elements from computer science)
and experiments.

and the synthesis of the elements in the Cosmos, see
Fig. 1. Experiments produce data volumes that range in
complexity and heterogeneity, thereby posing enormous
challenges to their design, their execution, and the sta-
tistical data analysis.

Theoretical modeling of nuclear properties is, in most
physical cases of interest, limited by the large amount of
degrees of freedom in quantum-mechanical calculations.
The analysis of experimental data and the theoretical
modeling of nuclear systems aims, as is the case in all
fields of physics, at uncovering the basic laws of motion
in order to make predictions and estimations, as well as
finding correlations and causations for strongly interact-
ing matter. The broad aims of nuclear physics as a field
correspond to a highly distributed scientific enterprise.
Experimental e↵orts utilize many laboratories worldwide,
each with unique operation, data acquisition, and anal-
ysis methods. Similarly, the scales of focus spanned in
theoretical nuclear physics lead to broad needs for algo-
rithmic methods and uncertainty quantification. These
e↵orts, utilizing arrays of data types across size and en-
ergy scales, create an ideal environment for applications
of ML methods.

II. MACHINE LEARNING FOR NUCLEAR PHYSICS IN
BROAD STROKES

Statistics, data science, and ML form important fields
of research in modern science. They describe how to
learn and make predictions from data, and enable the

extraction of key information about physical processes
and the underlying scientific laws based on large datasets.
As such, recent advances in ML capabilities are being
applied to advance scientific discoveries in the physical
sciences (Carleo et al., 2019; Deiana et al., 2021).

Ideally, ML represents the science of building models
to perform a task without the instructions being explic-
itly programmed. This approach introduces in practice
a hierarchy of mathematical operations that enable the
computer to learn complicated concepts by building them
out of simpler ones. In terms of a graphical representa-
tion, this can be visualized as a deep network of training
and learning operations, often just referred to as deep
learning (Goodfellow et al., 2016).

There exist many ML approaches; they are often split
into two main categories, supervised and unsupervised.
In supervised learning, training data are labeled and one
lets a specific ML algorithm learn and deduce patterns
in the datasets.

This allows one to make predictions about future
events and/or data not included in the training set. On
the other hand, unsupervised learning is a method for
finding patterns and relationship in datasets without any
prior knowledge of the system. Many researchers also op-
erate with a third category, dubbed reinforcement learn-
ing. This is a paradigm of learning inspired by behav-
ioral psychology, where actions are learned to maximize
reward. One may encounter reinforcement learning being
accompanied by supervised deep learning methods such
as deep ANN. Furthermore, what is often referred to as

• NP is a well-established field of research (>century).
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• Huge span of in energy&length scales, from 
strongly interacting SM particles to structure of stars!



The underlying challenges in a nutshell…

3

FIG. 1 Schematic relationships between the topics discussed in this Colloquium. The diagram emphasizes the close connections
between theory, computations (both computational science and data science as well as many elements from computer science)
and experiments.

and the synthesis of the elements in the Cosmos, see
Fig. 1. Experiments produce data volumes that range in
complexity and heterogeneity, thereby posing enormous
challenges to their design, their execution, and the sta-
tistical data analysis.

Theoretical modeling of nuclear properties is, in most
physical cases of interest, limited by the large amount of
degrees of freedom in quantum-mechanical calculations.
The analysis of experimental data and the theoretical
modeling of nuclear systems aims, as is the case in all
fields of physics, at uncovering the basic laws of motion
in order to make predictions and estimations, as well as
finding correlations and causations for strongly interact-
ing matter. The broad aims of nuclear physics as a field
correspond to a highly distributed scientific enterprise.
Experimental e↵orts utilize many laboratories worldwide,
each with unique operation, data acquisition, and anal-
ysis methods. Similarly, the scales of focus spanned in
theoretical nuclear physics lead to broad needs for algo-
rithmic methods and uncertainty quantification. These
e↵orts, utilizing arrays of data types across size and en-
ergy scales, create an ideal environment for applications
of ML methods.

II. MACHINE LEARNING FOR NUCLEAR PHYSICS IN
BROAD STROKES

Statistics, data science, and ML form important fields
of research in modern science. They describe how to
learn and make predictions from data, and enable the

extraction of key information about physical processes
and the underlying scientific laws based on large datasets.
As such, recent advances in ML capabilities are being
applied to advance scientific discoveries in the physical
sciences (Carleo et al., 2019; Deiana et al., 2021).

Ideally, ML represents the science of building models
to perform a task without the instructions being explic-
itly programmed. This approach introduces in practice
a hierarchy of mathematical operations that enable the
computer to learn complicated concepts by building them
out of simpler ones. In terms of a graphical representa-
tion, this can be visualized as a deep network of training
and learning operations, often just referred to as deep
learning (Goodfellow et al., 2016).

There exist many ML approaches; they are often split
into two main categories, supervised and unsupervised.
In supervised learning, training data are labeled and one
lets a specific ML algorithm learn and deduce patterns
in the datasets.

This allows one to make predictions about future
events and/or data not included in the training set. On
the other hand, unsupervised learning is a method for
finding patterns and relationship in datasets without any
prior knowledge of the system. Many researchers also op-
erate with a third category, dubbed reinforcement learn-
ing. This is a paradigm of learning inspired by behav-
ioral psychology, where actions are learned to maximize
reward. One may encounter reinforcement learning being
accompanied by supervised deep learning methods such
as deep ANN. Furthermore, what is often referred to as

• NP is a well-established field of research (>century).

• Huge span of in energy&length scales, from 
strongly interacting SM particles to structure of stars!

•Theoretically: provide predictive modelling of strongly 
(non-perturbative) interacting matter challenged by 
huge amount of degrees of freedom in QM calculations.



The underlying challenges in a nutshell…

3

FIG. 1 Schematic relationships between the topics discussed in this Colloquium. The diagram emphasizes the close connections
between theory, computations (both computational science and data science as well as many elements from computer science)
and experiments.

and the synthesis of the elements in the Cosmos, see
Fig. 1. Experiments produce data volumes that range in
complexity and heterogeneity, thereby posing enormous
challenges to their design, their execution, and the sta-
tistical data analysis.

Theoretical modeling of nuclear properties is, in most
physical cases of interest, limited by the large amount of
degrees of freedom in quantum-mechanical calculations.
The analysis of experimental data and the theoretical
modeling of nuclear systems aims, as is the case in all
fields of physics, at uncovering the basic laws of motion
in order to make predictions and estimations, as well as
finding correlations and causations for strongly interact-
ing matter. The broad aims of nuclear physics as a field
correspond to a highly distributed scientific enterprise.
Experimental e↵orts utilize many laboratories worldwide,
each with unique operation, data acquisition, and anal-
ysis methods. Similarly, the scales of focus spanned in
theoretical nuclear physics lead to broad needs for algo-
rithmic methods and uncertainty quantification. These
e↵orts, utilizing arrays of data types across size and en-
ergy scales, create an ideal environment for applications
of ML methods.

II. MACHINE LEARNING FOR NUCLEAR PHYSICS IN
BROAD STROKES

Statistics, data science, and ML form important fields
of research in modern science. They describe how to
learn and make predictions from data, and enable the

extraction of key information about physical processes
and the underlying scientific laws based on large datasets.
As such, recent advances in ML capabilities are being
applied to advance scientific discoveries in the physical
sciences (Carleo et al., 2019; Deiana et al., 2021).

Ideally, ML represents the science of building models
to perform a task without the instructions being explic-
itly programmed. This approach introduces in practice
a hierarchy of mathematical operations that enable the
computer to learn complicated concepts by building them
out of simpler ones. In terms of a graphical representa-
tion, this can be visualized as a deep network of training
and learning operations, often just referred to as deep
learning (Goodfellow et al., 2016).

There exist many ML approaches; they are often split
into two main categories, supervised and unsupervised.
In supervised learning, training data are labeled and one
lets a specific ML algorithm learn and deduce patterns
in the datasets.

This allows one to make predictions about future
events and/or data not included in the training set. On
the other hand, unsupervised learning is a method for
finding patterns and relationship in datasets without any
prior knowledge of the system. Many researchers also op-
erate with a third category, dubbed reinforcement learn-
ing. This is a paradigm of learning inspired by behav-
ioral psychology, where actions are learned to maximize
reward. One may encounter reinforcement learning being
accompanied by supervised deep learning methods such
as deep ANN. Furthermore, what is often referred to as

• NP is a well-established field of research (>century).

• Huge span of in energy&length scales, from 
strongly interacting SM particles to structure of stars!

•Theoretically: provide predictive modelling of strongly 
(non-perturbative) interacting matter challenged by 
huge amount of degrees of freedom in QM calculations.

•Experimentally: huge data rates/volumes, precision 
with large dynamic range, heterogeneity, variety in 
experiments/communities.



The underlying challenges in a nutshell…

3

FIG. 1 Schematic relationships between the topics discussed in this Colloquium. The diagram emphasizes the close connections
between theory, computations (both computational science and data science as well as many elements from computer science)
and experiments.

and the synthesis of the elements in the Cosmos, see
Fig. 1. Experiments produce data volumes that range in
complexity and heterogeneity, thereby posing enormous
challenges to their design, their execution, and the sta-
tistical data analysis.

Theoretical modeling of nuclear properties is, in most
physical cases of interest, limited by the large amount of
degrees of freedom in quantum-mechanical calculations.
The analysis of experimental data and the theoretical
modeling of nuclear systems aims, as is the case in all
fields of physics, at uncovering the basic laws of motion
in order to make predictions and estimations, as well as
finding correlations and causations for strongly interact-
ing matter. The broad aims of nuclear physics as a field
correspond to a highly distributed scientific enterprise.
Experimental e↵orts utilize many laboratories worldwide,
each with unique operation, data acquisition, and anal-
ysis methods. Similarly, the scales of focus spanned in
theoretical nuclear physics lead to broad needs for algo-
rithmic methods and uncertainty quantification. These
e↵orts, utilizing arrays of data types across size and en-
ergy scales, create an ideal environment for applications
of ML methods.

II. MACHINE LEARNING FOR NUCLEAR PHYSICS IN
BROAD STROKES

Statistics, data science, and ML form important fields
of research in modern science. They describe how to
learn and make predictions from data, and enable the

extraction of key information about physical processes
and the underlying scientific laws based on large datasets.
As such, recent advances in ML capabilities are being
applied to advance scientific discoveries in the physical
sciences (Carleo et al., 2019; Deiana et al., 2021).

Ideally, ML represents the science of building models
to perform a task without the instructions being explic-
itly programmed. This approach introduces in practice
a hierarchy of mathematical operations that enable the
computer to learn complicated concepts by building them
out of simpler ones. In terms of a graphical representa-
tion, this can be visualized as a deep network of training
and learning operations, often just referred to as deep
learning (Goodfellow et al., 2016).

There exist many ML approaches; they are often split
into two main categories, supervised and unsupervised.
In supervised learning, training data are labeled and one
lets a specific ML algorithm learn and deduce patterns
in the datasets.

This allows one to make predictions about future
events and/or data not included in the training set. On
the other hand, unsupervised learning is a method for
finding patterns and relationship in datasets without any
prior knowledge of the system. Many researchers also op-
erate with a third category, dubbed reinforcement learn-
ing. This is a paradigm of learning inspired by behav-
ioral psychology, where actions are learned to maximize
reward. One may encounter reinforcement learning being
accompanied by supervised deep learning methods such
as deep ANN. Furthermore, what is often referred to as

• NP is a well-established field of research (>century).

• Huge span of in energy&length scales, from 
strongly interacting SM particles to structure of stars!

•Theoretically: provide predictive modelling of strongly 
(non-perturbative) interacting matter challenged by 
huge amount of degrees of freedom in QM calculations.

•Experimentally: huge data rates/volumes, precision 
with large dynamic range, heterogeneity, variety in 
experiments/communities.

• Computing support often centrally organised & 
understaffed compared to HEP communities!



Facility for Antiproton and Ion Research - 

“The Universe in the Laboratory”

April 2023



Facility for Antiproton and Ion Research - 

“The Universe in the Laboratory”

GSI

(since 1969)

April 2023



Facility for Antiproton and Ion Research - 

“The Universe in the Laboratory”

GSI

(since 1969)

April 2023

FAIR

(foundation 2010)



Facility for Antiproton and Ion Research - 

“The Universe in the Laboratory”

GSI

(since 1969)

Green IT cube

(since 2016)  

April 2023

FAIR

(foundation 2010)



Facility for Antiproton and Ion Research - 

“The Universe in the Laboratory”

203x



Facility for Antiproton and Ion Research - 

“The Universe in the Laboratory”

Cutting-edge science and technology

▪ ESFRI Landmark near Frankfurt, Germany (ESCAPE)

▪ Top priority for European Nuclear Physics Community

▪ International: 50 countries, 3000 researchers

▪ Diverse community from atomic to particle physics

▪ High intensity+precision+diversity+parallel operation

▪ Monolitic and modular experimental setups

203x

+THEORY and BEAM physics



Facility for Antiproton and Ion Research - 

“The Universe in the Laboratory”

Cutting-edge science and technology

▪ ESFRI Landmark near Frankfurt, Germany (ESCAPE)

▪ Top priority for European Nuclear Physics Community

▪ International: 50 countries, 3000 researchers

▪ Diverse community from atomic to particle physics

▪ High intensity+precision+diversity+parallel operation

▪ Monolitic and modular experimental setups

203x

Towards the next generation “data challenge”

▪ Volume, Velocity, Veracity, Variety, and Complexity!

▪ ~TB/s data rates, online processing, ~5x105  cores

▪ Data stored on disk ~35 PB/year

▪ Distributed computing with a large user community

▪ Committed to “open-science” (FAIR) concept

+THEORY and BEAM physics
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• The topic computing can bring up strong “religious 
fights”, not driven by pragmatism whatsoever.

• The K.I.S.S. principle is often being ignored: 
reinventing the wheel not uncommon, unfortunately.
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extremely evolutionary process.

• Involvement of the user community in the 
computing development process crucial.

• Provide “easy-to-learn” frameworks with quality 
assurance tools, open environment, collaborative 
tools, and a stable HPC! 

• Integrate computing systems in development with 
ongoing activities (learn by experience).
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Example success story - FairRoot Mohammad Al-Turany et al. FairRoota success   
●

Used for simulations and design studies for FAIR and Non-
FAIR experiments  

●
It enhanced the synergy between the different groups

●
Many useful tools where developed within FairRoot

10
03.05.23
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Example success story - FairRoot Mohammad Al-Turany et al. FairRoota success   
●

Used for simulations and design studies for FAIR and Non-
FAIR experiments  

●
It enhanced the synergy between the different groups

●
Many useful tools where developed within FairRoot

10
03.05.23

•Used for FAIR design studies, feasibility MC studies, and 
(Phase-0) experiments!


•Generates lots of synergy between different groups at FAIR and 
outside FAIR


•Example case for a successful “federated” computing! 
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• BSD sockets API

• Bindings for 30+ languages

• Lockless and Fast

• Automatic re-connection 

• Multiplexed I/O

FAIRMQ: 
o Based on “actor” model of concurrency 
o Asynchronous messaging toolkit
o Broad scala of messaging pattern
o Easy and scalable networking
o Commun. layer: 0MQ, shared memory, 
   and Libfabric
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O2: SOFTWARE FRAMEWORK IN ONE SLIDE

Framework & 
Data Processing Layer (DPL)

Hides the hiccups of a distributed system, presenting a familiar "Data Flow" system. 
➤ Reactive-like design (push data, don't pull) 
➤ Implicit workflow definition via modern C++ API. 
➤ Core common tasks: topological sort of dependencies, deployment of generated topologies, data lifecycle 

handling, service management, common infrastructure services, plug-in manager. 
➤ Integration with the rest of the production system, e.g. Monitoring, Logging, Control.
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Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends: 
➤ Simplified, zero-copy format optimised for performance and direct GPU usage. 
➤ ROOT based serialisation. Useful for QA and final results. 
➤ Apache Arrow based. Backend of the analysis data model and for integrating with other tools. 
➤ We contributed the RDataFrame Arrow backend to ROOT.

Transport Layer: ALFA / FairMQ1

➤ Joint collaboration with FAIR and GSI 
➤ Standalone processes (devices) for deployment flexibility & resilience 
➤ Message passing as a parallelism paradigm 
➤ Shared memory backend for reduced memory usage and improved performance 
➤ Seamless remote communication
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- No trigger, all Pb-Pb collisions recorded
- Continuous readout recording time frames instead of events
- 100x more collisions, much more data
- Cannot store all raw data → online compression
→ Use GPUs to speed up online (and offline) processing

- Native data unit is a time frame:
all data from a configurable period of data, currently 2.8 ms
(until 2023 was 11 ms)

- Majority of the processing in the EPN online computing farm
- Synchronous processing during data taking

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb., tracks of different collisions shown in different colors.

ALICE in Run 3
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- Calibration / reconstruction
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Offline and Online based on same architecture
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mCBM: Λ reconstruction in Ni+Ni collisions at 1.93 AGeV

Data, run 2391, total run duration 1:57h
4x to 5x107 ions per spill, 10s spill
400 - 500 kHz average collision rate

MC , identical reconstruction chain
100 M generated events
105 events / s 
63.7 M triggered events

preliminarypreliminary
data analysis 
in progressrare signal reconstructed,

- milestone reached !

31.05.2023 N.Herrmann, 12. RRB meeting, June2023 19

1st test version of an (FAIR MQ based) online selection
run 2188, March 31, 03:15 CET, 
107 U ions per spill, approx. 100 kHz averaged collision rate   

-60                                                             60 ns    -300                                                   300 ns     -300                                                           300ns

-100                                                        100 ns    -30                                                       80ns

Applied 
filter condition: 1 T0 hit, 2 STS hits, 5 TOF hits     ("Λ trigger")

Δt (ns)

coincidence with T0

CBM
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(This is equivalent to say that the operator is connected) but 
also that 1) the sense of gray-level variation between n and n r 
has to be preserved and 2) the variation interval between 
c 1 f 2 3n 4  and c 1 f 2 3n r 4  must contain the variation interval 
between f 3n 4 and f 3n r 4. 

The theoretical properties of levelings are studied in [5] and 
[6]. In particular, it has been shown that any opening or closing 
by reconstruction is a leveling. If c1, c2 are levelings, their com-
position c2c1 is also a leveling. Finally, if 5ci6 are levelings, their 
supremum — i ci, and infimum – i ci, are levelings. 

The most popular technique to create 
levelings relies on the self-dual reconstruc-
tion process described next. 

DEFINITION 5 

Self-Dual Reconstruction 
If f  and g are two images (respectively 
called the “reference” and the “marker” 
image), the self-dual reconstruction rD 1g|f 2  
of g with respect to f  is given by 

 gk 5 eC 1gk21 2 — 3dC 1gk21 2 – f 4
 5 dC 1gk21 2 – 3eC 1gk21 2 — f 4
 1equivalent expression 2  and
  r D 1g|f 2 5 limkS` gk, (10) 

where g0 5 g and dC and eC are respectively the dilation and the 
erosion with the flat structuring element defining the connec-
tivity (3 3 3 square or cross). 

In fact, the self-dual reconstruction is the antiextensive 
reconstruction of (2) for the pixels where g 3n 4 , f 3n 4 and the 
extensive reconstruction of (3) for the pixels where 
f 3n 4 , g 3n 4. In practice, the self-dual reconstruction is used to 
restore the contour information after an initial filtering 
 process. In other words, the reconstruction allows the creation 
of a connected version rD 1c 1 f 2 |f 2  of any filter c 1 f 2 . 

A typical example of initial filter c 1 f 2  is an alternating 
sequential filter 

 c 1 f 2 5 whk
ghk

whk21
ghk21

cwh1
gh1
1 f 2 ,  (11)

where whk
 and ghk

 are respectively a closing and an opening 
with a structuring element hk. In [26], the initial filter is a 
linear low-pass filter based on the convolution with a 
Gaussian impulse response. As can be seen in Figure 7, the 
low-pass filter removes most of the texture of the original 
image. The leveling provides then the structural part of the 
image, that is, the image content, with a precise definition of 

[FIG5] Contrast-oriented connected operators: (a) reconstruction of f – c and (b) second 
reconstruction: dynamic opening.
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[FIG6] Contrast filtering: (a) hmax operator and (b) dynamic 
opening.
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[FIG7] Example of image decomposition in structural and texture parts with leveling: (a) original image, (b) marker: low-pass filtering 
with Gaussian filter, (c) leveling: structural part, and (d) residue: texture part.

(a) (b) (c) (d)

Towards “smarter” algorithms
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[FIG7] Example of image decomposition in structural and texture parts with leveling: (a) original image, (b) marker: low-pass filtering 
with Gaussian filter, (c) leveling: structural part, and (d) residue: texture part.
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Towards “smarter” algorithms



Role of ML and AI in nuclear physics

3

FIG. 1 Schematic relationships between the topics discussed in this Colloquium. The diagram emphasizes the close connections
between theory, computations (both computational science and data science as well as many elements from computer science)
and experiments.

and the synthesis of the elements in the Cosmos, see
Fig. 1. Experiments produce data volumes that range in
complexity and heterogeneity, thereby posing enormous
challenges to their design, their execution, and the sta-
tistical data analysis.

Theoretical modeling of nuclear properties is, in most
physical cases of interest, limited by the large amount of
degrees of freedom in quantum-mechanical calculations.
The analysis of experimental data and the theoretical
modeling of nuclear systems aims, as is the case in all
fields of physics, at uncovering the basic laws of motion
in order to make predictions and estimations, as well as
finding correlations and causations for strongly interact-
ing matter. The broad aims of nuclear physics as a field
correspond to a highly distributed scientific enterprise.
Experimental e↵orts utilize many laboratories worldwide,
each with unique operation, data acquisition, and anal-
ysis methods. Similarly, the scales of focus spanned in
theoretical nuclear physics lead to broad needs for algo-
rithmic methods and uncertainty quantification. These
e↵orts, utilizing arrays of data types across size and en-
ergy scales, create an ideal environment for applications
of ML methods.

II. MACHINE LEARNING FOR NUCLEAR PHYSICS IN
BROAD STROKES

Statistics, data science, and ML form important fields
of research in modern science. They describe how to
learn and make predictions from data, and enable the

extraction of key information about physical processes
and the underlying scientific laws based on large datasets.
As such, recent advances in ML capabilities are being
applied to advance scientific discoveries in the physical
sciences (Carleo et al., 2019; Deiana et al., 2021).

Ideally, ML represents the science of building models
to perform a task without the instructions being explic-
itly programmed. This approach introduces in practice
a hierarchy of mathematical operations that enable the
computer to learn complicated concepts by building them
out of simpler ones. In terms of a graphical representa-
tion, this can be visualized as a deep network of training
and learning operations, often just referred to as deep
learning (Goodfellow et al., 2016).

There exist many ML approaches; they are often split
into two main categories, supervised and unsupervised.
In supervised learning, training data are labeled and one
lets a specific ML algorithm learn and deduce patterns
in the datasets.

This allows one to make predictions about future
events and/or data not included in the training set. On
the other hand, unsupervised learning is a method for
finding patterns and relationship in datasets without any
prior knowledge of the system. Many researchers also op-
erate with a third category, dubbed reinforcement learn-
ing. This is a paradigm of learning inspired by behav-
ioral psychology, where actions are learned to maximize
reward. One may encounter reinforcement learning being
accompanied by supervised deep learning methods such
as deep ANN. Furthermore, what is often referred to as

“Machine Learning in Nuclear Physics”,
Bohnlein, Diefenthaler, Sato, Schram, arXiv:2112.02309
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Theory

Streaming 
Readout

Calorimetry

PID

Event 
Reco

Anomaly 
Detection

Fast
Simulations

Inspire search
“Neural Network”

2018
25,000 $

2023
50,000 $

• (Variational) Auto Encoders

• Artificial Neural Networks

• Bayesian Model Averaging/Mixing

• Bayesian Optimisation

• Bayesian Neural Networks

• Convolutional Neural Networks

• Ensemble Methods & Boosting

• Generative Adversarial Networks

• Gaussian Processes

• k-Nearest Neighbours

• Kernel Regression

• Logistic Regression

• Long Short-Term Memory

• Principal Component Analysis

• Linear Regression

• Reinforcement Learning

• Recurrent Neural Networks

• Support Vector Machines

• …

• Finding “right tool for the right job”!
• Integrating physics knowledge.
• Control of systematic errors. 
• Domain shifts in supervised learning.
• Deployment on online/embedded architectures. 
• Accessibility of model/trained data.
• Convincing and involving community.

Challenges!
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Technology - smart experiment control “Technology”

Smart experiment control at GSI/FAIR 

Objective 

Accelerator-driven experiments in the fields of particle, hadron, and nuclear physics have been 
traditionally in the forefront of technology with the well-established worldwide web as one of the 
key inventions with a huge impact in our present society. With the advent of next-generation par-
ticle accelerators, such as the FAIR facility currently under construction in Darmstadt, experiments 
will face new challenges requiring a paradigm shift in both data processing and experiment moni-
toring and control. With unprecedented interaction rates and ambitious physics objectives (so-
called ‘needle in haystack searches’), the next generation of experiments must become precision 
instruments operating under extreme conditions. Real-time and accurate stabilisation and control 
of the various detector elements will become even more essential than ever before. The chal-
lenges range from 1) coping high complexity in the number and diversity of sensors, 2) meeting 
the requirement of in-situ and fast sensor calibration, 3) being able to minimise the costs in human 
resources, computing and energy usage, and 4) maintaining a respectable and competitive time 
between experiment and publication. Our long-term goal is to deploy a fully-automated, AI-based 
experiment control to optimise detector parameters during data acquisition with the objective to 
reduce, or eliminate, the need for calibrating the data offline. We envisage that a collaborative ef-
fort between researchers active at GSI/FAIR and the HessianAI community will be fruitful to ad-
dress the challenges and to provide a unique application that broadens the AI-research land-
scape. 



Concept 

The aim is to provide an infrastructure that will enable 
the development of an auto-encoding AI model of a 
complex sensor network for a wide range of FAIR ex-
periments. Depending on the sensitivity, various inputs,  
including environmental parameters, beam conditions, 
information from harvest and reconstructed data, and 
Monte Carlo information, are foreseen. The output will 
provide updated calibration values and optimised sen-
sor parameter predictions that can be used to adjust 
operational settings in real-time. As a first step, slow-
control and beam data of a subsystem collected during 
a past experiment will be exploited to develop an AI 
prototype model. As a proof-of-principle, this system 
will subsequently be used parasitically during an up-
coming GSI/FAIR experiment in Phase Zero.


Collaboration 

GSI/FAIR is an international facility, thereby connecting various physicists and engineers from all 
over the world in various large collaborations. GSI/FAIR researchers are experts in the operation 
and characterisation of a wide spectrum of detectors, in processing raw data into high-level in-
formation, and in conducting Monte Carlo simulations taking into account the various details of 
the actual experiment. Today’s software frameworks have been developed with a mindset based 
on a traditional human-driven waterfall model, thereby disconnecting the detector control aspects 
from the data processing. To realise the project outlined here, it is necessary to rethink these con-
cepts, connect with communities outside our comfort zone and, with a proof-of-principle concept 
at hand, convince our communities. We, therefore, wish to collaborate with experts in the field of 
artificial intelligence, computer vision, and modern software engineering to spearhead new 
projects beneficial for all participants.  


Contact 

Helena Albers 		 - h.albers@gsi.de

Johan Messchendorp	- j.messchendorp@gsi.de
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from the data processing. To realise the project outlined here, it is necessary to rethink these con-
cepts, connect with communities outside our comfort zone and, with a proof-of-principle concept 
at hand, convince our communities. We, therefore, wish to collaborate with experts in the field of 
artificial intelligence, computer vision, and modern software engineering to spearhead new 
projects beneficial for all participants.  


Contact 

Helena Albers 		 - h.albers@gsi.de

Johan Messchendorp	- j.messchendorp@gsi.de

Why?


• Beams at high intensities, harsh environment, increasing #sensors + holistic


• In-situ event reconstruction will rely on quality beam & calibrated sensors


• High operational costs, limited beam time, and human resources


• Remote control has become more important (pandemic)



*



*

Adrian Oeftiger (GSI) 

Towards an International Network
For Multiphysics Modelling, Machine learning and Model-
based Control in Accelerator Sciences and Technologies

*

What this is all about!

Bringing together experts in 

accelerators and artificial intelligence to 

tackle challenges of present and future 

research infrastructures

InM4CAST
Tentative working groups

✴Group 1 : Optimisation. Leader : Verena Kain (CERN)

✴Group 2 : Anomaly detection. Leader : Annika Eichler (DESY)

✴Group 3 : DATA generation and Simulation. Leader : Adrian Oeftiger (GSI)

✴Group 4 : Coordination, organisation, applications transverses et relations 
industrielles. Leader : Christine Darve (ESS)
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• Involved in ESCAPE, PUNCH4NDFI, EuroLabs
• Observer in EOSC
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ChatGPT



Challenges in federated computing?

• Federation is in the genes of nuclear physicists (or researchers in general!)


• “Federated computing” in the context of the “FAIR” principle (interoperability)? 
Do not make it a goal in itself, keep in mind the objective.


• Formulate the “figure-of-merit”, e.g. what are we optimising precisely, what 
is “useful” and for whom? What is the price tag (financial sustainability?).


• Do not limit yourself to the European context: researchers are working 
internationally (shouldn’t it be open science?).


• It will only work if the research community sees the value of “federated 
computing”. Put the researcher and its research objectives central!

ChatGPT



Challenges in (federated) computing in NP

- five concluding propositions

• Computing in NP is challenged by the complexity in its 
future data processing, operation, and handling, 
preserving precision in a large “dynamic range”. 


• The large diversity and standards within NP 
communities adds another degree of complexity. 


• ML/AI has an enormous potential on various 
computational fronts. ML/AI as a “game changer” in data 
processing and experiment operation.


• The basis of successful federative computing is 
commonly agreed (interface) standards.


• Federated computing valuable if the research interest 
is central within an international focus.

Johan Messchendorp (GSI/FAIR)
j.messchendorp@gsi.de

mailto:J.messchendorp@gsi.de

