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Introduction

Ultrafast dynamics and structural properties of matter at extreme states
Highly excited solids - laser processing, dynamic compression, high B-field
Near-solid density plasmas - WDM, HDM, rel. laser-matter interaction
Quantum states of matter = high field QED
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The dominant radiation source term

High intensity Lasers when hits solid targets creates:

i
: 0
tecmt ol return currents U
- free electrons (from ionization of atoms) < = ,;'
) : P collisions: scattering, ionization, © 7>
extreme electric and magnetic fields et seg st oes O
- thin plasma layer (ions & electrons) on a dense, solid body  <* _Hﬂ “"'"';‘f"“" f</ ~, %>
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- energetic electrons propagate into solid f | Sy A

induced magnetic fields
- ‘Hot electron temperature’ is related to the laser intensity

and relativistic effects must be taken into account
27 B i -1
T = 2}'I|:L- (1 +a, sin’ f) " dr} -1

a, :\/21 / ncmeco T. Kluge et al.,
Phys. Rev. Lett. 107, 205003 (2011)

n.= critical density of the dense plasma

- T,, scales with the laser intensity

Electrons are originated in the target with a Boltzmann-like distribution
and generate bremsstrahlung radiation

Escaping electrons + bremsstrahlung radiation

are the dominant radiation source term for the facilities in HED science
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Investigating the hot electron dynamics via PIC simulations - (Satif-15)

In PIC simulations:
- similar laser and target parameters as in experiments
- study of the temporal evolution of the sheath field,
to take into account the hot e refluxing mechanism
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L.G. Huang, M. Molodtsova, A. Ferrari et al.,
Phys. Plasmas 29, 023102 (2022)

- The energy spectra of forward and backward hot electrons are integrated on 4 probing boundaries
- The optimal integration time (132 fs) is calculated from the study of the temporal evolution‘_

of the sheath field oRESDEN ” ) ey A =
pt =
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Experimental sighature of hot electrons refluxing in thin targets

Large experimental campaign to study the bremsstrahlung properties
associated to the proton acceleration ( DRACO facility, Ti.Saffire laser, 8J, 150 TW)

Scaling of the deposited energy |

- Foils of different materials (Ti, Al, W)

- Thickness scan of Ti (1/2/10/50/700 pm) e ' ' -
- Alternative shapes (cones, wires) Ve
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deposited by the bremsstrahlung
in our photon detectors

as a function of the target tickness,
compared with FLUKA simulations

without electron refluxing description
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European XFEL: beamlines and instruments

s clectron tunnel € electron switch
photon tunnel @® electron bend
finnmn undulator B electron dump

Lo

il C IIIIIIIIIIIIIIII_.‘

fully installed 10 /2016

linear accelerator SASE 2 SASE 1 SASE 3
for electrons (10.5, 14.0, 17.5C=V) § 0.05 nm - 0.4 nm 0.05 nm - 0.4 nm 0.4 nm -4.7 nm

HED — some numbers
Beamline commissioning 2019, first user experiments spring 2019
Typically 20 experiments/year
Photon energies: 5-25+ keV
| Pulse energies: >3 mJ @ 8 keV

HED is a versatile platform for High Energy Density Physics and dynamic compression
experiment
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|
Hibef user consortium

=
Helmholtz international beamline for extreme fields H I B E I

W |nstallation and operation of lasers and part of the HED instrument

. P . FFM setup (BMBF) HIBEF |
=80 institutions, 20 countries mwﬁmma .c

> 40 M€ budget
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Now: up to 400 TW
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Geometry: HED + upstream region

The present simulation includes the elements above

The lead/steel/lead local shielding has been described in the first 16.5 m
from the HED

.
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. Source terms for solid target experiment up to 400 TW:
General strategy for shielding assessment

1. To be sure to cover the full possible electron temperature range for the 400 TW case, including
expected improvements in the beam conditions, we extend the calculations from the typical
electron energy kT« =5 MeV to the “upper limit” case kTe = 15 MeV

r“ - N
il Maedr
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. Source terms for solid target experiment @400 TW:
General strategy for shielding assessment

1. To be sure to cover the full possible electron temperature range for the 400 TW case, including
expected improvements in the beam conditions, we extend the calculations from the typical
electron energy kT« =5 MeV to the “upper limit” case kTe = 15 MeV

2. In every geometry configuration (collinear with the XFEL, 90°, 45° forward and
counter-propagating as accident scenario) we have always 2 contributions:

- the escaping electrons source term, described with a 10 nC charge
emitted in a 45° semi-opening cone

- the “pure bremsstrahlung” source term, due to the electron recirculation in the sheat field in the
solid target. Since this radiation source term is approximately isotropic, it is important to stress
that its contribution to the counter-propagating radiation is always present, in every geometry
configuration. This means that it must be evaluated not only for an accident scenario (where we
will see that it is negligible respect to the escaping e- source term), but also for normal
operation. From the calculation we will conclude that it is negligible for RP purposes

.

r = o
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. Source terms for solid target experiment @400 TW:
General strategy for shielding assessment

1. To be sure to cover the full possible electron temperature range for the 400 TW case, including
expected improvements in the beam conditions, we extend the calculations from the typical
electron energy kTe =5 MeV to the “upper limit” case kTe = 15 MeV

2. In every geometry configuration (collinear with the XFEL, 90°, 45° forward and
counter-propagating as accident scenario) we have always 2 contributions:

- the escaping electrons source term, described with a 10 nC charge
emitted in a 45° semi-opening cone

- the “pure bremsstrahlung” source term, due to the electron recirculation in the sheat field in the
solid target. Since this radiation source term is approximately isotropic, it is important to stress
that its contribution to the counter-propagating radiation is always present, in every geometry
configuration. This means that it must be evaluated not only for an accident scenario (where we
will see that it is negligible respect to the escaping e- source term), but also for normal
operation. From the calculation we will conclude that it is negligible for RP purposes

3. We evaluate the Bremsstrahlung source term due to the recirculating electrons.
To describe this we calculate the electron current in the sheath field in the target assuming

20% conversion efficiency from a laser pulse of 10 J.
Depending o the kT, we obtain (the case with kT=2 MeV, characteristic of operation up to 150 TW,

> reemperen ____

Charge
(10 J/KTo ) x 200 O-133uC e e
4 . We calculate for every geometry the contribution of escaping electrons. -~

We will demonstrate that this is always the dominant part for RP purposes ouesoex » T A [
T
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The Bremsstrahlung Source Term

To evaluate the Bremsstrahlung source term we do a two-step simulation:

(1) We simulate first an isotropic electron source with the proper kT, at the center of a copper
sphere (material representative of a typical target), 30 um thick. This thickness has been
evaluated identifying the effective recirculation time with the the life window of the sheath field,
evaluated in ~ 100 fs from PIC calculations [ref: Huang et al., PoP 29, 023102 (2022)].

Considering ve ~ ¢ we obtain a 30 um path length.
We save then the photon spectrum exiting the sphere, to be used in the next simulation step,
and we calculate the photon yield (N,» per source electron)

— 0.0001 | | lkTe_= 15 Mev '1
(2) As second step we use the § 1606 s e '
calculated photon spectrum, properly 8 1e.08 s
. (1] M::’ ]
weighted, as Bremsstrahlung source 5 teto Do
term. é Te-12 -
(This two-step method is more accurate and much = 1614 1
faster- once the photon spectra are computed- k) ]
respect to the previous killing of electrons out of the % 1816 L
sphere and filtering the photon dose) 1e-18 l l
0 10 20 30 40 50 60 70
E[MeV]
et 3.87E-3 3.06 E-3 2.50 E-3

(e —» photons)
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. The two components of the source term with kT =2 MeV

in 45° forward geometry
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The full radiation field

H*(10)[uSv/shot] - kT, = 2 MeV

Full radiation field
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Benchmark: dose distribution around the chamber
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The two components of the source term with kT = 15 MeV
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Accident scenario:
Full counter-propagating source term in the case kT = 15 MeV

Escaping electrons + Bremsstrahlung

rAIR3

rRmCtrl

H*(10)[uSv/shot] - 10 nC escaping e- + Bremsstrahlung source term
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