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Secondary Radiation at FRIB
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FRIB: Facility for Rare Isotope Beams

 Multiple radiation scenarios (T. Ginter’s talk)

 Accelerator facility: primary beams from 1H to 238U

 Max. Energy: ~ 200 MeV/u (upgrade 400 MeV/u)

 Beam power up to 400 kW

 Strong neutron fields
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Systematic Uncertainties in Transport Models
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Plessis, Constr. Build. Mat.,199, 637 (2019)

Xu, Phys. Rev. C.,101, 024609 (2020)

Simulation Reality

Geometry
 Overlapping, gaps, shape 
 Material composition, density
 Non-uniformities, shield cracks

Nuclear Data
 Cross sections 
 Systematics
 Reaction probes

Models
 Physics assumptions
 Approximations
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Bayesian Inference
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Yanagisawa, Front. Comput. Neurosci., 13 (2019)

A consistent approach that 
makes use of a prior probability 
(hypothesis) and data (evidence) 
to estimate a posterior probability

: prior probability

: posterior probability

: likelihood function

: parameters

: data

: normalization

Bayes’ Rule

Markov chain Monte Carlo
Stochastic sampling the posterior 
probability using a random walk

Drawback: requires a large 
number of evaluations
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Surrogate Modeling:
Machine Learning
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Zamora et. al., Proceedings SATIF-15, (2021)

It is necessary to use a surrogate model that emulates or mimics the radiation transport results while 
significantly reducing the computational time required for each sampling evaluation.

MC Radiation Transport (~ hours)

ML Surrogate Model (~ seconds)

Multidimensional regression problem

See R. Pal Chowdhury’s poster

Non-intrusive approach
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Application 1
Neutron Shield
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Zamora et. al., in preparation

Nakao et al., Nucl. Sci. Eng. ,124, 228 (1996)

Radiation Transport Simulation
Using PHITS

Convolutional Neural Network Predicted Neutron Fluence

30 cm shield

165 cm shield
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Uncertainty Quantification for Neutron Shield
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Zamora et. al., in preparation

Posterior Probability Density Functions

25 cm 150 cm

Cumulative Probability

Neutron Fluence
Data: Nakao et al., Nucl. Sci. Eng. ,124, 228 (1996)
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Application 2
Beam Dump Activation
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PHITS + DCHAIN Calculations

 19 primary beams for PAC1: energy, power, element

 Uncertainty propagation

 Activation

 Isotope inventory

 Residual dose rate

Production target
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Application 2
Posterior Probability Distributions
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Parameters:
 Density of the production target
 Beam energy after the target  
 Beam rate Propagation of systematic uncertainty 

through DCHAIN (burnup code). UQ 
tested with synthetic data (std = 10%)

It is possible to study correlations 
and parameter sensitivity
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Application 2
Activation After One-Year of FRIB Operation
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1 year operation (19 experiments) ~ 5 kW

After beam shutoff

1 month

Uncertainty in the nuclide inventory. 
Isotope by isotope basis

Top 10 isotopes after 1 month cooling
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 A Bayesian inference framework was developed to quantify uncertainties arising from 
radiation transport calculations. The approach is non-intrusive and can be utilized for various 
codes. 
Machine learning application is employed for surrogate modeling. The model emulates the 

radiation transport results while significantly reducing the computational time required for each 
sampling evaluation.
The method can be used to study systematic uncertainty propagation and parameter sensitivity 

involving coupling to burnup codes.

Summary
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Thanks for your attention!
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