

Bayesian Uncertainty Quantification for Radiation Transport Calculations at FRIB

Juan Carlos Zamora

May 28, 2024

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB) Operations, which is a DOE Office of Science User Facility under Award Number DE-SC0023633.

Secondary Radiation at FRIB

FRIB: Facility for Rare Isotope Beams

- \triangleright Multiple radiation scenarios (T. Ginter's talk)
- \triangleright Accelerator facility: primary beams from ¹H to ²³⁸U
- \triangleright Max. Energy: \sim 200 MeV/u (upgrade 400 MeV/u)
- \triangleright Beam power up to 400 kW
- \triangleright Strong neutron fields

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Systematic Uncertainties in Transport Models

Geometry

- \triangleright Overlapping, gaps, shape
- \triangleright Material composition, density
- \triangleright Non-uniformities, shield cracks

Nuclear Data

- **≻ Cross sections**
- \triangleright Systematics
- \triangleright Reaction probes

Models

- \triangleright Physics assumptions
- \triangleright Approximations

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Plessis, Constr. Build. Mat.,**199**, 637 (2019)

Bayesian Inference

Markov chain Monte Carlo

Stochastic sampling the posterior probability using a random walk

Drawback: requires a large number of evaluations

Yanagisawa, Front. Comput. Neurosci., **13** (2019)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib msu edu

Surrogate Modeling: Machine Learning

It is necessary to use a surrogate model that emulates or mimics the radiation transport results while significantly reducing the computational time required for each sampling evaluation.

Zamora et. al., Proceedings SATIF-15, (2021)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Application 1 Neutron Shield

Nakao et al., Nucl. Sci. Eng. ,**124**, 228 (1996)

Transmission Through Shields of Quasi-Monoenergetic Neutrons Generated by 43- and 68-MeV Protons-I: Concrete Shielding Experiment and Calculation for Practical Application

Noriaki Nakao* Tohoku University, Cyclotron and Radioisotope Center, Aramaki, Aoba-ku, Sendai 980, Japan

Convolutional Neural Network Predicted Neutron Fluence

Zamora et. al., in preparation

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Uncertainty Quantification for Neutron Shield

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Application 2 Beam Dump Activation

PHITS + DCHAIN Calculations

- \geq 19 primary beams for PAC1: energy, power, element
- \triangleright Uncertainty propagation

- \triangleright Isotope inventory
- \triangleright Residual dose rate

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Application 2 Posterior Probability Distributions

 \triangleright Density of the production target

 \triangleright Beam energy after the target 0.06 0.00 4.5 Rate $[10^{12} \text{ pps}]$
 \therefore 2.5 Density [mg/cm³] 2.0 1.8 1.6

Parameters:

> Beam rate Propagation of systematic uncertainty through DCHAIN (burnup code). UQ tested with synthetic data (std = 10%)

> It is possible to study correlations and parameter sensitivity

180

190

200

Energy [MeV/u]

210

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

 2.5

 3.0

 3.5

Rate $[10^{12}$ pps]

 4.0

4.5

 1.6 1.7

1.8 1.9 2.0

Density [mg/cm³]

 2.1 2.2

Application 2 Activation After One-Year of FRIB Operation

Uncertainty in the nuclide inventory. Isotope by isotope basis

Top 10 isotopes after 1 month cooling

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Summary

- \triangleright A Bayesian inference framework was developed to quantify uncertainties arising from radiation transport calculations. The approach is non-intrusive and can be utilized for various codes.
- Machine learning application is employed for surrogate modeling. The model emulates the radiation transport results while significantly reducing the computational time required for each sampling evaluation.
- \triangleright The method can be used to study systematic uncertainty propagation and parameter sensitivity involving coupling to burnup codes.

Summary

- \triangleright A Bayesian inference framework was developed to quantify uncertainties arising from radiation transport calculations. The approach is non-intrusive and can be utilized for various codes.
- Machine learning application is employed for surrogate modeling. The model emulates the radiation transport results while significantly reducing the computational time required for each sampling evaluation.
- \triangleright The method can be used to study systematic uncertainty propagation and parameter sensitivity involving coupling to burnup codes.

Thanks for your attention!

