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Secondary Radiation at FRIB
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Systematic Uncertainties in Transport Models

Simulation «—— Reality

Geometry
» Overlapping, gaps, shape
» Material composition, density
» Non-uniformities, shield cracks
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Xu, Phys. Rev. C.,101, 024609 (2020)
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Bayesian Inference

A consistent approach that
makes use of a prior probability
(hypothesis) and data (evidence) Stochastic sampling the posterior

to estimate a posterior probability . Prediction error LD | 9)| probability using a random walk

Likelithood

Markov chain Monte Carlo
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P(6) : prior probability
P(6 | D) : posterior probability

v

] ] ] Expectation Estimate Reality 5
L(D | 0) : likelihood function
@ : parameters ,
P Bayes’ Rule
D - data Drawback: requires a large
L(D | 8)P(6) number of evaluations
Z :normalization PO | D) = 7 '
Yanagisawa, Front. Comput. Neurosci., 13 (2019)
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Surrogate Modeling:
Machine Learning

It is necessary to use a surrogate model that emulates or mimics the radiation transport results while
significantly reducing the computational time required for each sampling evaluation.

MC Radiation Transport (~ hours) Multidimensional regression problem

1

ML Surrogate Model (~ seconds)
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See R. Pal Chowdhury’s poster
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Non-intrusive approach
Zamora et. al., Proceedings SATIF-15, (2021)
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Application 1
Neutron Shield

Convolutional Neural Network Predicted Neutron Fluence

Radiation Transport Simulation

Using PHITS
T T T ™1
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| Nakao et al., Nucl. Sci. Eng. ,124, 228 (1996)

i ] Transmission Through Shields of Quasi-Monoenergetic
50 N Neutrons Generated by 43- and 68-MeV Protons —I:

i | Concrete Shielding Experiment and Calculation

for Practical Application

Moriaki Nakao*

Tohoku University, Cyclotron and Radicisotope Center, Aramaki, Aoba-ku, Sendai 980, Japan
Zamora et. al., in preparation
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FRIB

Uncertainty Quantification for Neutron Shield

Posterior Probability Density Functions

Cumulative Probability

Nominal

Thickness 3% 16% 50% 84% 97 %
25 23.1 24.0 251 26.2 27.2
50 49.2 49.8 50.7 51.5 524
100 98.1 98.8 99.8 100.7 101.6
150 148.4 149.3 1504 151.5 1524
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Neutron Fluence
Data: Nakao et al., Nucl. Sci. Eng. ,124, 228 (1996)
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Application 2
Beam Dump Activation

S-Shape Beam Dump

PHITS + DCHAIN Calculations
» 19 primary beams for PAC1: energy, power, element

» Uncertainty propagation
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Application 2
Posterior Probability Distributions

Parameters:

» Density of the production target

» Beam rate

=

» Beam energy after the target
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2.2

Propagation of systematic uncertainty
through DCHAIN (burnup code). UQ
tested with synthetic data (std = 10%)

It is possible to study correlations
and parameter sensitivity
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Application 2
Activation After One-Year of FRIB Operation

Uncertainty in the nuclide inventory.
Isotope by isotope basis

1 year operation (19 experiments) ~ 5 kW

After beam shutoff }
95% CI o
Median \
Exp.data e 1 month
0.1 1 10 100
Time [days]
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Top 10 isotopes after 1 month cooling

2 3

Be-7 P-33 Na22 H-3 5-35 P-32 Ca45 Co-38 Ar-37 Cr5l
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Summary

» A Bayesian inference framework was developed to quantify uncertainties arising from
radiation transport calculations. The approach is non-intrusive and can be utilized for various

codes.

»Machine learning application is employed for surrogate modeling. The model emulates the
radiation transport results while significantly reducing the computational time required for each

sampling evaluation.
» The method can be used to study systematic uncertainty propagation and parameter sensitivity

involving coupling to burnup codes.
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Summary

» A Bayesian inference framework was developed to quantify uncertainties arising from
radiation transport calculations. The approach is non-intrusive and can be utilized for various

codes.

»Machine learning application is employed for surrogate modeling. The model emulates the
radiation transport results while significantly reducing the computational time required for each

sampling evaluation.
» The method can be used to study systematic uncertainty propagation and parameter sensitivity

involving coupling to burnup codes.

Thanks for your attention!
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