
Shielding aspects of Accelerators, Targets and Irradiation Facility 16

Alberto Previti : alberto.previti@enea.it

Particle and radiation transport simulations: 

tackling user needs via software architecture 

layer abstractions

INFN LNF - 28th May 2024



Actors in particle and radiation transport

2User needs and software architectures strategies - Alberto Previti

• There are a multitude of neutronic codes either deterministic or stochastic

• … but industrial and research needs require to go beyond the concept of neutronic code 
to provide a neutronic platform

nuclear system

designers codes and methods

developer
safety

analyst

nuclear plant

operator
research

agencies
training

professor

algorithm

researcher
student

neutronic study

platform

calculation scheme

and validation expert

➢This presentation aims at highlighting the effect of software architecture choices and their 

impact on the user needs



Bricks of a nuclear code

• Geometry

– volumes of the system

– regions on which the results 

are collected

• Materials

– isotopic vector

– nuclear data

• Source

– intensity

– location

– type

• Solver

– numerical methods to the get 

solution

– projection/restriction to 

compute results

• I/O

– get input data

– provide results

3User needs and software architectures strategies - Alberto Previti

➢A calculation platform employs 

one or more nuclear codes as 

components



Backend vs Frontend

4User needs and software architectures strategies - Alberto Previti

Distinct software components involved in calculation platforms:

• backend

– calculation kernel

– manages solvers and numerical methods

– provides solution methodologies for physical phenomena

– manages multiple geometries (e.g. computation and homogenization)

– allows implementing calculation protocols

• frontend

– modeling/engineering layer providing building blocks for each application

– interpreter of user needs and translation to actual calculations

– provides pre/post processing tools

– allows interactively drive back-end based on

▪ user calculation requests

▪ outcome of calculations during processing

algorithm 

viewpoint

engineering 

viewpoint

➢Building a calculation platform 

requires multiple competencies



Monolithic vs Library

5User needs and software architectures strategies - Alberto Previti

• Scientific code:

– monolithic → code process internally an input deck

– library platform → basically as an ensemble of pure functions working on 
objects

• Need to build complex yet powerful calculations schemes

– separate responsibilities

▪ low level numeric/mathematic functionalities (e.g. C++/Fortran)

▪ high level engineering/physics functionalities (e.g. Python)

– programmable platform

▪ ease to build new schemes and studies

▪ ease to post-processing

▪ multi-physics possible



Objects property and life cycle (1)

6User needs and software architectures strategies - Alberto Previti

• Static/monolithic approach

▪ data masked to the user → no introspection

▪ internal state modified → no multiple executions possible in the same thread

▪ fixed output stream → interactive execution not easily achievable

➢difficult to build a platform

• Example: flux calculation

▪ User defines a flux problem→ code stores the modeling and data structures internally

▪ User launches a flux calculation → code perform the calculation and show outputs in listing

➢If no convergence, the User needs to manually analyze the listing, stop the execution, and 
relaunch everything from scratch after modifying the input deck → manual processing

User Code data output stream
input results



Objects property and life cycle (2)

7User needs and software architectures strategies - Alberto Previti

• Library/pure approach

▪ data owned by the user → introspection possible
▪ internal state not present → easily thread safe
▪ output stream decided by the user → interactive choices possible

➢programmable calculations possible

• Example: flux calculation
▪ User defines a flux problem→ code returns the modeling and data objects
▪ User launches a flux calculation → code manages input objects, performs the calculation 

and returns an outcome objects
➢If no convergence, the User may analyze the results and perform adjustments dynamically 

in a programmable way → automatic processing possible in addition to manual.

User Code
data

input

results



A test case: attenuation problem

Attenuation problem in 2 slabs

• geometry: 𝑑1, 𝑑2
• materials: Σ1, Σ2
• source: 𝐼0
• result: 𝐼
• solver: 𝐼 = 𝐼0𝑒−(Σ1𝑑1+Σ2𝑑2)

– semi-analytic solution is 

possible in this case

8User needs and software architectures strategies - Alberto Previti

Σ1 Σ2
𝑑1 𝑑2

𝐼0 𝐼



Sample card-based input deck

9User needs and software architectures strategies - Alberto Previti

3.1e-3

6.82e-2

2.1

1.2

57.33

materials

geometry

source



Different implementations

10User needs and software architectures strategies - Alberto Previti

1. “Classic” Fortran implementation [fortran2]
2. Direct translation in C++ [cpp2b]

3. Python bindings to provide nicer user interfaces

4. Issues of the internal states and of the I/O stream

5. Refactoring into a pure C++ library [cpp3]

6. Python bindings of the code to construct a platform

7. Composition of elements via Python objects

8. Backward compatibility of the card-based input deck

Test cases available at https://github.com/alberto743/satif16

https://github.com/alberto743/satif16


Concluding remarks

11User needs and software architectures strategies - Alberto Previti

• Algorithm developers should consider and incorporate the user needs in 

building a calculation platform

• Separation of responsibilities between frontend and backend allows 

presenting the engineering viewpoint, while maintaining the algorithm and 

modeling complexity to a dedicated layer

• Designing clever object lifecycle is of paramount importance to obtain 

programmable platforms

• Allocated data structures should belong to the user to allow introspection 

and reusability and to avoid race conditions and side effects

• Building a transport solver pure (re-entrant) library may require deep 

refactoring efforts



Thank you for your attention

User needs and software architectures strategies - Alberto Previti


	Diapositiva 1: Particle and radiation transport simulations: tackling user needs via software architecture layer abstractions
	Diapositiva 2: Actors in particle and radiation transport
	Diapositiva 3: Bricks of a nuclear code
	Diapositiva 4: Backend vs Frontend
	Diapositiva 5: Monolithic vs Library
	Diapositiva 6: Objects property and life cycle (1)
	Diapositiva 7: Objects property and life cycle (2)
	Diapositiva 8: A test case: attenuation problem
	Diapositiva 9: Sample card-based input deck
	Diapositiva 10: Different implementations
	Diapositiva 11: Concluding remarks
	Diapositiva 12

