PAUL SCHERRER INSTITUT

Maria Ilaria Besana :: Paul Scherrer Institut

Shielding Calculations for the Swiss Light Source Upgrade

SATIF16 Workshop, 29 May 2024

- Introduction
- Losses at the dump region
 - Energy density on the dump
 - Load on permanent magnets
- Losses at the collimation region
 - Load on undulator
 - Dose outside the SLS bunker
- Accidental loss scenario for a working gallery below the bunker

Simulations performed with FLUKA 4.3 Monte Carlo code

Introduction

The Swiss Light Source (SLS) synchrotron facility began operation in early 2001

Upgrade ongoing for SLS 2.0

<u>Key changes</u> from SLS to SLS 2.0

- Reduced electron beam emittance from 5500 pm to 157 pm
- Energy increase from 2.4 GeV to 2.7 GeV
- + Intercepting devices added to localize the losses:
 - Collimators
 - Dump

SLS 2.0 – The Upgrade of the Swiss Light Source P. R. Willmott & H. Braun

- Introduction
- Losses at the dump region
 - Energy density on the dump
 - Load on permanent magnets
- Losses at the collimation region
 - Load on undulator
 - Dose outside the SLS bunker
- Accidental loss scenario for a working gallery below the bunker

Simulations performed with FLUKA 4.3 Monte Carlo code

Dedicated dump located upstream of the thick septum assembly

- Top view at beam height
- Side view at beam position

PAUL SCHERRER INSTITUT **Energy Density on the Dump**

Normal operation: full beam (400 nC) swept uniformly on the beam dump aperture

Х

Ζ

Maximum density on the surface < $1000 \text{ J} \text{ cm}^{-3}$

- User routine "source_newgen.f" used
- Refined binning for scoring: 20 μm X 10 μm X 100 μm
- Single Coulomb scattering activated

Worst case scenario: one bunch with higher charge 5 nC

- Introduction
- Losses at the dump region
 - Energy density on the dump
 - Load on permanent magnets
- Losses at the collimation region
 - Load on undulator
 - Dose outside the SLS bunker
- Accidental loss scenario for a working gallery below the bunker

Simulations performed with FLUKA 4.3 Monte Carlo code

ΖŅ

Х

Collimation Region: Geometry

- Source terms considered:
 - Regular losses at the horizontal collimator
 - Regular losses at the vertical collimator
 - Dark current from RF cavities (not discussed in this talk)

Losses at Horizontal Collimator

Inner part of the horizontal collimator:

• Half gap = 0.361 cm

- Source term from tracking simulations (elegant), read in FLUKA through a user routine
- Lost charge rate = 7.5 nC/h

Losses at Vertical Collimator

Vertical collimator rotated by 90 degrees:

• Half gap = 0.443 cm

- Source term from tracking simulations (elegant), read in FLUKA through a user routine
- Lost charge rate = 1 nC/h

PAUL SCHERRER INSTITUT

Load on the Undulator

x [cm]

Ex. Neutron fluence rate

PAUL SCHERRER INSTITUT

z [cm]

Load on the Undulator

Conservative values

PAUL SCHERRER INSTITUT

Shielding Critical Points

Losses @h-collimator:

PAUL SCHERRER INSTITUT

Weekly ambient dose [µSv/week] 5 200 2 100 y [cm] 0 0.5 -100 0.2 -200 0.1 -300 -200 -100 100 200 -500 -400 0 z [cm]

photons contribution negligible

Losses @h-collimator:

PAUL SCHERRER INSTITUT

Losses @v-collimator: neutrons

- Below 10 µSv/week
- Peak behind 3rd RF opening
 - the 4th opening has a shielding reinforcement

Why Shielding Reinforcement?

PAUL SCHERRER INSTITUT

Reinforcement

- Dose outside the bunker reduced by a factor of 5, thanks to reinforcement
- In the final design all apertures will have thicker shielding, as the 4th one

- Introduction
- Losses at the dump region
 - Energy density on the dump
 - Load on permanent magnets
- Losses at the collimation region
 - Load on undulator
 - Dose outside the SLS bunker
- Accidental loss scenario for a working gallery below the bunker

Simulations performed with FLUKA 4.3 Monte Carlo code

Technical gallery below the SLS bunker about 10 m downstream the collimators in 09L

Worst case scenario = Accidental beam dump at the undulator (extremely unlikely but possible)

Two possible cases identified, through closed orbit bump calculations \rightarrow Lost particles distribution read in FLUKA with user routines

Peak dose profile as a function of z below the floor:

Peak dose profile as a function of z below the floor:

Total dose around 5 µSv/event

- Changes in the SLS 2.0 storage ring pose challenges to the shielding design
- Studies performed with FLUKA Monte Carlo to assess:
 - the load on critical accelerator components
 - dose maps outside the SLS bunker
- Settings optimization for the different simulations
- A variety of source terms has been considered
 - input from tracking simulations
 - use of user routines
- Worst case scenarios identified
- Strategies conceived to mitigate the radiation
- Estimated values look acceptable
- The upgrade from SLS to SLS 2.0 is currently ongoing → goal for nominal beam 01/05/2025

- Changes in the SLS 2.0 storage ring pose challenges to the shielding design
- Studies performed with FLUKA Monte Carlo to assess:
 - the load on critical accelerator components
 - dose maps outside the SLS bunker
- Settings optimization for the different simulations
- A variety of source terms has been considered
 - input from tracking simulations
 - use of user routines
- Worst case scenarios identified
- Strategies conceived to mitigate the radiation
- Estimated values look acceptable
- The upgrade from SLS to SLS 2.0 is currently ongoing → goal for nominal beam 01/05/2025

Thanks for your attention!

Wir schaffen Wissen – heute für morgen

My thanks go to

- M. Aiba
- F. Armborst
- U. Frommherz
- R. Ganter
- C. Harm
- S. Harzmann
- M. Paraliev
- L. Pedrazzi
- R. Scheibl
- H. Siebold
- J. Snuverink
- D. Stephan
- L. Stingelin

- F. Cerutti
- A. Lechner
- F. Salvat Pujol

CERN-SY/STI

Particle fluence maps

