

Shielding and environmental monitoring for the ALFA accelerator at ELI Beamlines

Dávid Horváth

- ELI ERIC, ELI Beamlines Facility
- david.horvath@eli-beams.eu
- SATIF-16 28-31 May 2024

Outline

- 1. The ALFA laser-plasma accelerator
- 2. Shielding design
 - Source term
 - Evolution of the design
- 3. Environmental Dose Monitoring
 - Passive OSL
 - Active Pandora
- 4. Conclusions

ELI Beamlines Facility

ELI Beamlines Facility

L1 – Allegra

In house development

Design parameters: 100 mJ energy per pulse 15 fs pulse length 1 kHz repetition rate

Currently:

~ 40 mJ max energy

30 May 2024

Allegra Laser For Acceleration

Utilizing laser wakefield acceleration (LWFA) to accelerate electrons

Located in the L1 hall

Under continuous development

30 May 2024

ALFA

During commissioning:

- With 26 mJ laser power:
 - ~ 32 MeV average and
 - > 50 MeV maximum electron energy
- Operated only in bursts
- Successful user experiments

RP challenges at ALFA

Main issues

The laser floor was not designed for particle acceleration

- Wall 40 cm, calcium silicate bricks
- Large penetrations, no labyrinth
- Limited floor load capacity
- Sparse active radiation monitoring on the laser floor

RP challenges at ALFA

New chamber – change in beam direction:

- *Old:* Low occupancy "south" corridor
- *New:* Frequently used "west" corridor, entrance to changing room

Future developments:

- Higher laser power
- Continuous operation

Source term

Source term @ 1 kHz - 26 mJ laser power

- Quasi monoenergetic electrons:
 - Gaussian: 50 MeV mean, 10 MeV FWHM
 - 2.1 mrad divergence + 7 mrad pointing uncertainty
 - 10 fC/shot
- Background electrons:
 - Uniform: 0 20 MeV
 - 10 mrad divergence + 10 mrad pointing uncertainty
 - 100 fC/shot
- Background photons:
 - Gaussian: 80 keV mean 16 keV FWHM
 - 10 mrad divergence + 10 mrad pointing uncertainty
 - 10¹⁰ photons/shot

Monte Carlo simulation

Using FLUKA v4.3-3

Using JEFF-3.3 low energy neutron cross-sections

Photo- and electronuclear interactions enabled

Scoring ambient dose (H*) [ICRP116]

Monte Carlo simulation

- No objects downstream
- Small 0.1 T magnet for spectrometer

H* rate in the hall:

>1Sv/hour

H* rate in the "west" corridor:

~1mSv/hour

Shield designs

Concrete: 4.8 m³ - 12.48 t Granite: 3 m³ - 8.1 t Concrete: 4.8 m³ - 12.48 t Granite: 9.42 m³ - 25.4 t Concrete: 4.8 m³ - 12.48 t Granite: 29.5 m³ - 79.7 t Lead: 16.5 dm³ - 188 kg

Final design

eli

Final design

H* rate in the "west" corridor: <1µSv / hour

H* rate in the "south" corridor: max. ~ 100 µSv / hour No access during operation

Environmental monitoring

Passive measurements

BeO OSL dosimeters
Optically Stimulated Luminescence

Good dosimetric properties: High sensitivity to radiation Linear response: from 1 µGy to 1 Gy

Sets of 4 in lighttight package

Environmental monitoring

Active measurements

Pandora (LB 6419) by Berthold Photon And Neutron Dose Rate meter for Accelerators

Scintillator and ³He counter

Continuous and pulsed fields

OSL results (1 week)

Pandoras had to be relocated

Dose rate:

- Control room: up to 5 µSv/hour
- "West" corridor: up to ~ 100 µSv/hour

Immediate action:

• Close "west corridor" and changing room

Pandora results

Conclusions

Monte Carlo simulation only can be as good as its input

• Source term is just an assumption

Experimental setup is in constant change

Shot-by-shot differences

Fast moving research field – Difficulty to scale up radiation protection

Thank you for your attention!

Visit ELI ERIC at **eli-laser.eu** and ELI Beamlines at **eli-beams.eu**

