

SATIF-16 Shielding aspects of Accelerators, Targets and Irradiation Facilities

Evaluation of decommissioning of proton therapy centers based on the selection of shielding materials at the building stage of the facility

> Session 5: Induced Radioactivity and Decommissioning Thursday, May 30, 12.30 – 13.50 h Contribution #81

<u>Gonzalo Felipe García Fernández^{1*}</u>, Nuria García Herranz¹, Óscar Cabellos de Francisco¹, Eduardo Gallego¹

¹Nuclear Engineering Area, Industrial Engineers Faculty (ETSII), Technical University of Madrid (UPM), Spain

Evaluation of decommissioning of proton therapy centers based on the selection of shielding materials at the building stage of the facility

Session 5: Induced Radioactivity and Decommissioning

Thursday, May 30, 12.30 – 12.50 h Contribution #81 Motivation and context: Proton therapy around the world and Spain

Purpose: Assessment of activation in shielding of proton centers

Methodology

Main results

Summary

Faculty Disclosure

Х	No,	nothing	to	disclose

Yes, please specify:

Company Name	Honoraria/ Expenses	Consulting/ Advisory Board	Funded Research	Royalties/ Patent	Stock Options	Ownership/ Equity Position	Employee	Other (please specify)

Motivation: Proton therapy Centers (PTC) around the World and Spain

Area Monitoring Personnal Activation Shielding Dosimetry Decommissionin

Motivation: Operational Radiation Protection in proton therapy centers

Radioactive Facility Operation Authorization Article 20. Application (2nd category)

The application for the exploitation authorization must be accompanied by the following documents, which will update, where appropriate, the content of those presented when requesting the construction authorization:

- a)..
- •••
- •••
- ...

j) **Dismantling and closure plan**, where the planned final disposal of the waste generated will be set out and will include the study of the cost and the economic and financial forecasts to guarantee closure.

Purpose

Comparing neutron activation in shielding of compact proton therapy centers (CPTC), depending on the type of concrete in the barriers, using Monte Carlo codes

7

Activation process

Irradiation time:

t=20 years

No cooling

Tiempo de irradiación en número de periodos de semidesintegración	1	2	3	4	5	6	7	8	9	10
Valor del factor de saturación en % de la actividad de saturación	50	75	87,5	93,75	96,87	98,44	99,1	99,61	99,80	99,90

Neutron fluence: ϕ

Monte Carlo codes

Annual Workload: *3,19·10⁸ nC/year I=10,1 nA*

```
I=6,31`10<sup>10</sup> p/s
```

Fluence Rate, $\phi' = \phi'I$

Types of concrete

Element	Portland	Magnetite	Colemanite	Special Low
	(POR)	(MAG)	(COL)	Activation
				(SLA)
Н	0.01	0.118	0.891	0.0072
С	0.001	0.0016	0.0003	0.089
0	0.53	0.5292	0.0727	0.4776
Fe	0.014	0.2736	0.00005	0.0006
Ca	0.044	0.0309	0.0031	0.40492
Si	0.337	0.0263	0.0011	0.012
Al	0.034	0.007	0.0003	0.0027
Mg	0.002	0.007	0.0006	0.0024
Na	0.016	0	0	0.0008
В	0	0	0.029703	0
Κ	0.011	0.0013	0.00008	0.0003
Mn	0	0.0001	0	0
Ti	0	0.0009	0	0
V	0	0.0002	0	0
S	0	0.0007	0.000008	0.0009
Р	0	0.0022	0	0
Sr	0	0	0.000041	0.0003
Ν	0	0	0.000018	0
Cu	0	0	0	0.00008
Ru	0	0	0	0.0002
Density	2.30	4.10	2.12	2.18
(g/cm ³)				

- 1. POR: Conventional Portland concrete
- 2. MAG: Special concrete with magnetite
- 3. COL: Special concrete with colemanite
- 4. SLA: Special low activation concrete

Agg	regates
-	sand

- gravel

Aggregate	Portland	Magnetite (MAG)	Colemanite	Low activation					
	(РОК)		(COL)	(SLA)					
Co [*] (ppm)	21,9	21,9 21,9		0,2066					
Eu ^{**} (ppm)	1,08	1,08 1,08		0,0316					
Cs ^{***} (ppm)	3,21	3,21	3,21	0,0942					
*Cobalt is always included in steel reinforcement of concretes. Isotopic composition, ⁵⁹ Co, 100% **Isotopic composition, ¹⁵¹ Eu, 48%, ¹⁵² Eu, 52%,									
***Isotopic composition, ¹³³ Cs, 100%									

16th workshop on Shielding aspects of Accelerators, Targets and Irradiation Facilities (SATIF-16) 🔳 LNFN, Frascati, Italy 🔳 28 – 31 May 2024 Work: 81 García-Fernández 🛛 García-Herranz 🖉 Cabellos 🖿 Gallego

Calculating so	enarios
Source term: Neutron	yielding

Date = 20:21 21-Jul 2023

Case	Floment	Place	Material	Luci gy III	Luciey out	charge	Scenario	Case	Flement	Place	Material		2		Scenario
- and	Liement			(MeV)	(MeV)	(nA·h)	Scenario		Liement			(MeV)	(MeV)	(nA·h)	Scenario
1	Accelerator	Circunference of acceleration	Fe + Cu 45 cm	230	230	22.135	1, 2	24-29	Q1G	Entrance Q1G	Fe + Cu 29 cm	70, 86, 116, 160, 200, 230	70, 86, 116, 160, 200, 230	10% Values Table 30 for each energy, Other losses	2
2	Accelerator	Extraction	Fe + Cu 30 cm	230	230	39.843	1, 2	30-35	Q2G	Entrance Q2G	Fe + Cu 49 cm	70, 86, 116, 160, 200, 230	70, 86, 116, 160, 200, 230	Values Table 30 for each energy	1, 2
3	Q1C	Entrance Q1C	Fe + Cu 29 cm	230	230	1076,67	2	36-41	Q2G	Entrance Q2G	Fe + Cu	70, 86, 116,	70, 86, 116,	60% Values Table 30 for each energy,	1
4	Q2C	Entrance Q2C	Fe + Cu 49 cm	230	230	4.802,43	1				49 cm	160, 200, 230	160, 200, 230	Other losses	2
5	Q2C	Entrance Q2C	Fe + Cu 49 cm	230	230	3.725,76	2	42-47	Q2G	Entrance Q2G	Fe + Cu 49 cm	70, 86, 116, 160, 200, 230	70, 86, 116, 160, 200, 230	for each energy, Other losses	
6	Degrader	Entrance DEG	Be 19,137 cm	230	70	3.459,66	1, 2	48-53	SL1G	Entrance SL1G	Ni 12 cm	70, 86, 116, 160, 200, 230	70, 86, 116, 160, 200, 230	Values Table 30 for each energy	1, 2
7	Degrader	Entrance DEG	Be 17,933 cm	230	86	3.159,38	1, 2	54-59	SL1G	Entrance SL1G	Ni 12 cm	70, 86, 116, 160, 200, 230	70, 86, 116, 160, 200, 230	20% Values Table 30 for each energy Other losses	1
8	Degrader	Entrance DEG	B 15,196 cm	230	116	1.077,10	1, 2	60-65	5145	5.1	Ni	70, 86, 116,	70, 86, 116,	17.5% Values Table	2
9	Degrader	Entrance DEG	C 10.054 cm	230	160	369,03	1, 2		SLIG	Entrance SLIG	12 cm	160, 200, 230	160, 200, 230	Other losses	
10	Degrader	Entrance DEG	C	230	200	83,14	1, 2	66-71	SL2G	Entrance SL2G	Ni 12 cm	70, 86, 116, 160, 200, 230	70, 86, 116, 160, 200, 230	Values Table 30 for each energy	1, 2
11	Degrader	Entrance DEG	4,555 cm Al 19,137 cm	230	230	2,10	1, 2	72-77	SL2G	Entrance SL2G	Ni 12 cm	70, 86, 116, 160, 200, 230	70, 86, 116, 160, 200, 230	20% Values Table 30 for each energy Other losses	1
12	Collimator	Entrance COL	Ta 4 cm	70	70	4.192,82	1, 2	78-83	SL2G	Entrance SL2G	Ni 12 cm	70, 86, 116, 160, 200, 230	70, 86, 116, 160, 200, 230	17.5% Values Table 30 for each energy Other Josses	2
13	Collimator	Entrance COL	Ta 4 cm	86	86	4.021,11	1, 2	84-89	6126	5.1	Ni	70, 86, 116,	70, 86, 116,	12.5% Values Table	2
14	Collimator	Entrance COL	Ta 4 cm	116	116	1.649,63	1, 2		SL3G	Entrance SL3G	12 cm	160, 200, 230	160, 200, 230	Other losses	
15	Collimator	Entrance COL	Ta 4 cm	160	160	1.006,43	1, 2	90-95	Phantom	Phantom	Water 40x40x40	70, 86, 116, 160, 200, 230	-	25% Values Table 30 for each energía	1, 2 Gantry orientation
16	Collimator	Entrance COL	Ta 4 cm	200	200	412,16	1, 2				CIII.				gantry 0º
17	Collimator	Entrance COL	Ta 4 cm	230	230	152,47	1, 2	96-101	Phantom	Phantom	Water 40x40x40 cm ³	70, 86, 116, 160, 200, 230	-	50% Valores Tabla 30 para cada energía	Gantry Orientation 909
18-23	Q1G	Entrance Q1G	Fe + Cu 29 cm	70, 86, 116, 160, 200, 230	70, 86, 116, 160, 200, 230	Values Table 30 for each energy	1, 2	102-107	Phantom	Phantom	Water 40x40x40	70, 86, 116, 160, 200, 230	-	25% Valores Tabla 30 para cada energía	1, 2

energy

Track Detection in xyz mesh

File = track_xz_h_phantom.out

10

Results: Attenuation plots

Results: Activation chart

Results: Activation/cooling plots

Results: Activation of walls

Results: Comparing types of concrete

Building cost

1.	POR: 458 m ³	0.18 M€
2.	MAG: 365 m ³	0.75 M€
3.	COL: 350 m ³	0.6 M€
4.	SLA: 158 m ³	1 M€

Based on prices in Spain on Jun 22

Decommissioning costs

V>200 m³ → €142,000 + €2,710 (V-200)

(first 200 m ³, €710/m ³, rest €2,710/m ³)

Using layers with different types of concrete

Neutron flux and spectrum vary significantly in each area of a proton therapy center, therefore, it could be advisable to use different concrete in different areas, optimizing the selection based on, for example, attenuation, activation, and cost of building.

Some final proposals...

Control of the activation of shielding

Matsumura et al. 2022

per		Radiation Safety Management Vol. 21
Investigation of C	oncrete Radioactivation	in Cyclotron Type Proton
Therapy Faci	lities using in situ ²⁴ Na N	Measurement Method
Hiroshi MATSUMURA ^{1)*} , Hajime NAKAMURA Tsunemichi AKITA ²⁾ , Funiya	Go YOSHIDA ¹⁾ , Akihiro TO' ¹⁾ , Taichi MIURA ¹⁾ , Koichi NI Shoichi KATSUTA ²⁾ , Tetsuo A oshi NOBUHARA ⁴⁾ , and Yoko	YODA ¹⁾ , Kazuyoshi MASUMOTO ¹⁾ , SHIKAWA ¹⁾ , Kotaro BESSHO ¹⁾ , AKIMOTO ²⁾ , Yuya SUGAMA ³⁾ , NAGASHIMA ⁴⁾
¹⁾ High Energy Accelerat ²⁾ National Cancer Cen ³⁾ Aizawa Hospital Prot ⁴⁾ Tokyo Nucle	or Research Organization (KEK), Oho : ter Hospital East, 6-5-1 Kashiwanoha, H on Therapy Center, 2-5-1 Honjou, Matsr ar Services Co., Ltd., 1-3-5, Taito, Taito	I-1, Tsukuba, Ibaraki 305-0801, Japan Kashiwa-shi, Chiba 277-8577, Japan unoto City, Nagano 390-8510, Japan -ku, Tokyo 110-0016, Japan
	Received Sep. 9, 2020; accepted May	23, 2022
Ramoiseau et al. EPJ7cchniques and Instrum https://doi.org/10.1140/epjt/s/40485-023-00 EPJ . Or S	IX et al. 202	EPJ Techniques and Instrumentation
RESEARCH ARTICLE		Open Access
Hybrid monito	ring and measure	ement of the

E. Ramoisiaux^{1*}(), C. Hernalsteens^{1,2*}(), R. Tesse¹(), E. Gnacadja¹(), N. Pauly¹() and F. Stichelbaut³()

*Correspondence: eliott.ramoistaux@ulb.be; cedric.hemaisteens@cerr.ch *Service.de.Métrologie.Nucléaire.	Abstract Proton therapy systems prot
cedifichemalsteensgleern.ch 'Service de Wetologie Nucléaire, Université libre de Bruselle, Brusels, Belgium ⁹ CERN, European Organization for Nuclear Research, 1211, Geneva, 23, Switzerland Full list of author information is available at the end of the article	Proton therapy systems proc tailoring the beam energy an plan. A Low Activation Conc Ion Beam Applications (IBA) proton therapy centre in Chi- concrete shielding. To exper- the baseficial impact of the

ProtherWal proton therapy centre

roton therapy systems produce large fluxes of energetic secondary particles when alloring the basem energy and transverse profile to the specificities of each irradiation lan. A Low Activation Concrete (IAC) mix is foreseen for parts of the shielding of the in Beam Applications (BA) Proteus" One (P1) compact system at the ProtherWal roton therapy contre in Charleroy Belgium, to limit the long-term activation of the oncrete shielding. To experimentally monitor the long-term activation of the observed of the IAC on the scenario of feature monthermust to be about the abundlesi dimension of the IAC.

Coming soon to screens... Ambient Dose from photons in walls

Annual workload considered in a CPCT with synchrotron.

Nominal energy (MeV)	Nominal range (g/ cm²)	Proton beam per tretament of 2 Gy (nA)	Annua workload at the phantom in the isocenter (nA·h)/y
170	18.4	0,27	50,65
200	26.0	0,17	105,54
230	32.9	0,13	54,89
Total annual w year	orkload at the is	ocenter, W _{ino} (nA·h)/	211,08

Model: Isocyclotron

CAD

PHITS

Radiation fields

Behavior of different types of concrete for shielding in proton therapy centers was assessed

The amount of activated material is relevant, in a first stage, but the type of activation and the isotopes present is very relevant (quality: long and short life)

From the attenuation point of view, the four concretes meet the necessary dose attenuation conditions. Special concretes, MAG and COL, have much superior attenuation properties

From the point of view of activation, the most recommended concretes are those with a lower content of impurities that can be activated and generate radioactive waste. Direct relationship between the amount of activated concrete and the fraction of impurities (Eu)

Considering that the neutron flux and the neutron spectrum vary significantly in each area, it would be advisable to use different concretes, optimizing the selection with criteria based on attenuation, activation, and cost, for example.

References

- 1. Cossairt, J.D., Ouinn, M. Accelerator radiation physics for personnel and environmental protection. Boca Raton, FL, CRC Press, Taylor & Francis Group, 2019.
- Vincke, H., Theis C, Roesler S. Induced radioactivity in and around high-energy particle accelerators. Radiation Protection Dosimetry. 2011, 146(4): 434-9.
- Infantino, A. Advanced aspects of radiation protection in the use of particle accelerators in the medical field. TD. Universitá Degli Studi di Bologna (2015).
- Carbonez, P., La Torre, F.P., Michaud, R., Silari, M. Residual radioactivity at the CERN 600MeV synchrocyclotron. Nuc. Inst. Met. (A). Volume 694, 2012, pages 234-245.
- 5. EC. 1999. European Commission. Evaluation of the radiological and economic consequences of decommissioning particle accelerators. Report of European Commission 19151, 1999.
- 6. EC. 2013. European Commission. *Council Directive 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from* exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Of. J. EU. 13 1–73, 2014.
- IAEA. 2019. International Atomic Energy Agency. *Methodologies for assessing the induced activation source term for use in decommissioning applications*. SRS, 95, 2019.
- 8. IAEA. 2020a. International Atomic Energy Agency. *Decommissioning of particle accelerators*. IAEA, NES. NW-T-2.9, 2020.
- 9. IAEA. 2007. International Atomic Energy Agency. *Application of the concepts of Exclusion, Exemption and Clearance*. Safety Guide. RS-G-1.7. 2007. 10. IAEA. 1988. International Atomic Energy Agency. Thomas, R.H., Stevenson, G.R. *Radiological safety aspects of the operation of proton accelerators*. TRS 283. IAEA.
- 11. NCRP. 2005. Radiation Protection for Particle Acceleration Facilities. Recommendations of the National Council on Radiation Protection and Measurements, Report 144, Rev. 2005.
- 12. Ipe, N.E. PTCOG. Shielding Design and Radiation Safety of Charged Particle Therapy Facilities. PTCOG Report 1, Particle Therapy Cooperative Group (2010).
- 13. IAEA. 2020b. International Atomic Energy Agency. Regulatory control of the safety of ion radiotherapy facilities. IAEA-TECDOC-1891. IAEA, Vienna, 2020.
- 14. Chadwick, M.B., Herman, M., Obložinský, P., et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nuclear Data Sheets, Volume 112, Issue 12, 2011, Pages 2887-2996, ISSN 0090-3752.
- 15. Plompen, A.J.M., et al. The joint evaluated fission and fusion nuclear data library, JEFF-3.3. 2020, The European Physical Journal A. Springer Berlin Heidelberg.
- 16. Shibata, K, Iwamoto, O, Nakagawa, T., Iwamoto, N., et al. JENDL-4.0: A New Library for Nuclear Science and Engineering. J. Nuc. Sc. Tech., Vol. 48, No. 1, p. 1-30, 2011.
- 17. García-Fernández, G.F., Gallego, E., Gómez-Ros, J.M., Vega-Carrillo, H.R., Cevallos-Robalino, L.E., et al. Benchmarking of stray neutron fields produced by synchrocyclotrons and synchrotrons in compact proton therapy centers (CPTC) using MCNP6 Monte Carlo code. Applied Radiation and Isotopes, Vol. 193 (2023), pp. 110645.
- 18. Werner, C.J. (Ed.), 2017. MCNP User's Manual Code Version 6.2, LA-UR-17-29981. Los Alamos National Laboratories.
- 19. Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., et al. Features of Particle and Heavy Ion Transport Code System PHITS Version 3.02. J. Nucl. Sci. Technol. 55, 684-690 (2018).
- 20. Silari, M., Stevenson, G.R. Radiation protection at high energy proton accelerators. Radiation Protection Dosimetry. Vol. 96, No 4, pp. 311–321 (2001).
- 21. Carroll, L.R. Predicting Long-Lived, Neutron-Induced Activation of Concrete in a Cyclotron Vault. American Institute of Physics, 2001.
- 22. Ramoisiaux, E., Tesse, R., Hernalsteens, C. et al. Self-consistent numerical evaluation of concrete shielding activation for proton therapy systems Application to the proton therapy research centre in Charleroi, Belgium. Eur. Phys. J. Plus, 137 8 (2022) 889.
- 23. Vega-Carrillo, H.R., Guzmán-García, K.A., Rodríguez-Rodríguez, J.A., et al. Photon and neutron shielding features of quarry tuff. Annals of Nuc. Energy, 2018 (112): 411-417.
- 24. García-Fernández, G.F., Gallego, É., Gómez-Ros, J.M., Vega-Carrillo, H.R., García-Baonza, R., Cevallos-Robalino, L.E., Guzmán-García, K.A. Neutron dosimetry and shielding verification in commissioning of Compat Proton Therapy Centers (CPTC) using MCNP6.2 Monte Carlo code. Applied Radiation and Isotopes, Vol. 163 (2021), pp. 109279.

Evaluation of decommissioning of proton therapy centers based on the selection of shielding materials at the building stage of the facility

> Session 5: Induced Radioactivity abd Decommissioning Thursday, May 30, 12.50 – 13.10 h Contribution #81

<u>Gonzalo Felipe García-Fernández</u>^{1*}, Nuria García Herranz¹, Óscar Cabellos de Francisco¹, Eduardo Gallego¹

¹Nuclear Technology Area, Energy Engineering Department, Industrial Engineers Faculty (ETSII), Technical University of Madrid (UPM), Spaiin

Acknowledgment

Muchas Gracias

Thank you for your attention

Grazie Mille

Pablo Gracia Tolosana (UPM) Daniel Navarro Hernández (UPM) Cristina Ratero Talavera (UPM)

Further information? Please contact us:

Gonzalo Felipe García-FernándezNuclear Technology AreaAssistant ProfessorIndustrial Engineers Faculty (ETSII)gf.garcia@upm.esPolytechnic University of Madrid (UPM)