The 16th workshop on Shielding aspects of Accelerators, Targets and Irradiation Facilities

Measurement of nuclide production cross sections via the ²⁰⁸Pb(p,X) reactions at GeV-energy proton incidence

SUGIHARA Kenta¹ 1. KEK MEIGO Shin-ichiro², IWAMOTO Hiroki², MAEAKAWA Fujio² 2. JAEA/J-PARC

Structure of presentation

- 1. Introduction
- 2. Experiment
- 3. Data analysis
- 4. Obtained nuclides
- 5. Excitation functions
- 6. Conclusion and future work

Introduction

- Accelerator-Driven System (ADS) Transmutation of nuclear waste
- Radiation safety at ADS facility by JAEA Estimation of residual γ-ray dose rate -> Nuclide production cross section

Systematic measurements at J-PARC¹⁻⁸

GeV-energy proton + targets

Examples of targets (candidate materials) and their usage

Pb, Bi	LBE
Ti, Nb	Accelerator Cavity
Cr, Fe, Zn, Mo	Proton beam window
Al, Si, Cu, Zn	Beam duct

- Target in this study: ²⁰⁸Pb instead of ^{nat}Pb
- 1. Contained in LBE
- 2. Simplify the nuclear reaction and deepen the understanding of it

Measured data list

- 1) H. Matsuda *et al.*, JNST 55(8), (2018), pp. 955-961.
- 2) H. Takeshita *et al.*, NIM B 511, (2022), pp. 30-41.
- 3) H. Takeshita *et al.*, NIM B 527, (2022), pp. 17-27.
- 4) H. Matsuda *et al.*, JPS Conf. Proc. 33, (2021), 011047.
- 5) H. Iwamoto *et al.*, EPJ Web of Conf. 284, (2023), 01033.
- 6) K. Sugihara *et al.*, NIM B 545, (2023), 165153.
- 7) K. Sugihara *et al.*, NIM B (in press).
- 8) K. Nakano et al., JAEA-Research, 2021-014.

Introduction

Predictions based on theories PHITS⁹: INCL¹⁰, JAM¹¹, GEM¹² Library: JENDL/HE-2007¹³ Empirical formula: SPACS¹⁴ Without Exp. data, reliability is unclear. -> Benchmark study is still necessary.

²⁰⁸Pb(p,X) reaction
Number of preceding study: unsatisfactory

-> Accumulating the measured data of the ²⁰⁸Pb(p,X) reactions Confirming the prediction accuracy of models

Target Nucleus

proton

Purpose of this study

- 1. Measurement of the ²⁰⁸Pb(p,X) reactions
- 2. Comparison among our present data, previous studies, and aforementioned models

Experiment

Beam dump line near the extraction port of 3 GeV RCS

Holder of irradiated sample

Al

Data analysis

- 1. Obtain the net area of objective nuclides
- 2. Determine N₀ of attenuation curve (N₀e^{-λt}) (N₀: the number of nuclides at t=0, λ: decay constant)
- 3. Derive the cross sections

$$\sigma = \frac{f_{abs} f_{sec} f_{esc} N_0}{n f_{beam} N_p}$$

Uncertainty of Exp. data

- 1. Fitting parameter
- 2. Proton beam intensity* (2%)
- 3. Branching ratio
- 4. Standard γ -ray source intensity (2.5%)

* Monitor reactions, uncertainties of which are about 10%, were used to get the proton intensity in references. Thus, J-PARC has the advantage to measure the Exp. data with smaller uncertainties.

 σ : cross section [mb], n: areal density of ²⁰⁸Pb [/cm²] N_p: proton beam intensity, f_{abs}: factor of self-absorption f_{beam}: factor of proton beam intensity (imaging plate) f_{esc}: factor of incoming and outgoing nuclei (PHITS) f_{sec}: factor of secondary particles (PHITS)

Obtained nuclides

red: first data green: above 1 GeV first black: already measured in previous studies

e.g., Au nuclides Total: 6 nuclides first: 1 of 6 first > 1 GeV: 2 of 6 already: 3 of 6

As a result of our measurement, a total of 506 data (170 nuclides) were acquired.

28 nuclides were obtained for the first time.
109 nuclides above 1 GeV were measured firstever.

Light nuclides

OE: overestimate UE: underestimate

Medium-heavy to heavy nuclides

Excitation functions

Adjacent nuclides of ²⁰⁸Pb

Conclusion and future work

Conclusions

- Nuclide production cross sections
- ²⁰⁸Pb(p,X) reaction at 0.4, 1.3, 2.2, and 3.0 GeV proton incidence A total of 506 cross sections (170 nuclides) were acquired.
- •Comparison with models
- Calculations cannot reproduce the measured data.
- -> There still remains the room for improvement for calculations.

Future work

- •Revision of nuclear reaction models
- A lot of data with various targets are already taken.
- These data are useful to improve nuclear reaction models.
- •Comparison with ²⁰⁹Bi data
- We will compare between the ²⁰⁸Pb(p,X) and ²⁰⁹Bi(p,X) reactions.

Q&A slides

Comparison with ^{nat}Pb(p,X)

Correction of the proton intensity

Measurement of γ -rays' distribution from irradiated samples γ -rays' distribution = incident proton spatial distribution Fitting by Gauss function of the distribution

$$f(x,y) = \frac{N}{2\pi\sigma_x\sigma_y\sqrt{1-r^2}}exp\left[-\frac{1}{2(1-r^2)}\left\{\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2r(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right\}\right]$$

Integration of f(x,y) in the sample area

 $f_{beam} = \frac{1}{N} \int_{foil} f(x, y) dx dy$

Values of $f_{\mbox{\tiny beam}}$

E _p [GeV]	f _{beam}
0.4	0.9990
1.3	0.9689
2.2	0.9943
3.0	0.9717

Activation distribution of irradiated sample

Correction of the in/out nuclei

Nuclides generated in ²⁰⁸Pb layer: Moving to Al layer-> decreasing the cross section

Nuclides generated in Al layer: proton Moving to ²⁰⁸Pb layer-> increasing the cross sections beam

Correction factor: PHITS (T-Yield)

Values of f_{esc} for ^7Be

	0.4 GeV	1.3 GeV	2.2 GeV	3.0 GeV
f _{esc}	0.9692	1.087	1.116	1.108

Target foil structure

γ -ray detection efficiency

$$\ln \left\{ \varepsilon(E_{\gamma}) \right\} = \begin{cases} a_0 + a_1 \times \ln E_{\gamma} + a_2 \times (\ln E_{\gamma})^2 & (E_{\gamma} < E_{knee}) \\ b_0 + b_1 \times \ln E_{\gamma} + b_2 \times (\ln E_{\gamma})^2 & (E_{\gamma} \ge E_{knee}) \end{cases}$$

ε(E_γ): γ-ray detection efficiency
E_γ: γ-ray's energy [keV]
E_{knee}: separation energy [keV]
a_i, b_i (*i*=0,1,2): fitting parameters

Fitting param	neters at	50-mm	distance
---------------	-----------	-------	----------

a ₀	-28.6452
a ₁	10.6654
a ₂	-1.12329
b ₀	2.97939
b ₁	-1.38888
b ₂	0.0253932
E _{knee} [keV]	190

