

Shielding aspects of Accelerators, Targets and Irradiation Facilities

Experience during Ring Injection Dump Parts Exchange at the Spallation Neutron Source

I.I. Popova, F.X. Gallmeier, C. Elam, R. Schultz

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

Facility Layout

- Analyses Methods and Istruments
- Removal/Replacement Process
- Assumptions
- Results and Comparisons
- Conclusion

Introduction

- The Spallation Neutron Source (SNS), is presently the most powerful accelerator-driven neutron source in the world.
- Sub-microsecond 60 Hz proton pulses from the accelerator complex impinge on a liquidmercury target, generating pulses of neutrons that feed 19 operating instruments, and one more is coming this summer.
- According to the accelerator operation plan, the beam stop and the proton beam window assemblies of the existing RID will be removed, when they have reached their end-of-life

Introduction

- Ring Injection Dump was designed to accept 10% of the main (1.0-GeV, 2-milliamp) deflected proton beam from High-Energy Beam Transfer accelerator section
- Replacement was planned for April 2022 but performed in March-April 2023
- Ring Injection Dump has the most irradiated facility components
- Ring Injection Dump serves facility since the start-up April 2006
- Due to expected high residual radiation, some components are place directly into temporary storage container while being extracted
- All steps had good work planning to minimize radiation exposure to personal
- Residual dose rate analyses and later on radiological survey are performed for each replacement step

Facility Layout

Facility is located underground straight down stream from HEBT

- Beam stop is located inside the cradle with removable steel shielding on the top of the beam stop in the enclosure.
- The enclosure is inserted to SEG steel shielding blocks inside the reinforced concrete vault.

Facility Layout

Beam Stop Enclosure containing:➢ PBW and Beam Stop Assemblies

Shielding Blocks

CAK RIDGE

Analyses Methods and Instruments

- To obtain reaction rates in the beam stop full threedimensional radiation transport calculations for rigorously modeled RID are performed with MCNPX
- The decay gamma sources in the activated material are calculated using AARE script
- The beam operation history was taken from SNS archives
- ✤Cool down assumed 20 days
- Then decay gammas spectra in the multi-group structure and gamma power are extracted for each cell and are fec back to MCNPX input file

Analyses Methods and Instruments

Measurements are performed during each removal exchange stage

- to assure radiation safety for radiation protection personnel who were performing hands-on manipulations;
- to identify the highest dose rate locations

Used instruments for dose reading

- RadEye B20ER multi-Purpose Survey Meter
- Ludlum Model 79 Stretch Scope Survey Meter

Instruments are calibrated at ORNL

Analyses Methods and Instruments

RID detailed model includes:

Beam stop assembly with copper core
 PBW assembly with Inconel window
 Shielding blocks in the enclosure
 SEG permanent shielding blocks
 Concrete envelope

The RID geometry is modified accordingly to each stage of exchange reflecting :

- Extracted parts
- Container placement
- Parts lifted into the container on the top of the enclosure

Removal/Exchange Process

Extraction/replacement of the beam stop assembly is performed in stages
Block-by-block beam dump shielding removal
Beam stop assembly exchange
Beam stop get stacked, change in scenario – PBW W1 is removed
Placing partially back some of the beam dump shielding
Replacing beam stop assembly
Replacing the PBW assembly
Placing back the rest of the shielding

Removal/Exchange Process

The temporary storage container is placed on the top of the adapter plate

The beam stop assembly started to be is lifted

The lifting process was not successful; the beam stop assembly caught the PBW shield block W1

Assumptions

For prompt dose rate 5% from beam at 1GeV at 1.4 MW is going to the beam stop, multiplication factor is 4.375e14 proton/s

Initial analyses were performed for the last beam on target on March 20, 2023

Actual last day beam on target February 28, 2023

Total beam energy deposited to the beam dump of 3.412 GWh

Beam stop removal started March 2023

Assumptions Gamma Sources

Activity built up after 13.5 years of facility operation (about 5,000 days) and decay for beam stop and PBW structures

Activation build-up and decay for beam stop and PBW structures

Equilibrium reached

50 times reduction in activation in one day of cooldown

Assumptions Gamma Sources

- ✓ Exchange process took place between 7 and 35 days after the facility shutdown.
- Dose rate calculations were performed on source terms extracted for 20 days after the shutdown

Gamma source power over cool down time

- Huge reduction of source strength from bear termination time to one day
- From one day to 20 days the gamma source strength drops only about a factor of 2

Dose rates are calculated for each stage of removal/replacement

- Results are given as dose rates maps with indication of calculated/measured dose rates in callouts
- For comparison calculation with measurements dose rates are taken from mesh plots
- Uncertainties in detector positioning for dose rates measurements are with in 10-cm (factor of about 2)
- Uncertainties in the analyses are driven by:
 - Material description
 - \clubsuit Part of the proton beam going to the beam stop
 - Standard deviation
 - Time for which analyses are performed

Concrete and steel extension block, steel shielding blocks B1-3 and W1 are removed and W1 PBW shielding block

Survey data is taken on 03/20/2023

Comparison of measured vs. calculated dose rate shows good consistency: results are within 17%. Calculated dose rates are lower than the measured dose rates

Concrete and steel extension blocks are removed including all beam-stop and W2-3 shielding block, adaptor plate installed

Survey data is taken on 03/20/2023

Comparison of measured vs. calculated dose rate shows good consistency; results are within 13%. Calculated dose rates are lower than the measured dose rates

Concrete and steel extension blocks are removed including all beam-stop and all PBW shielding block, adaptor

Survey data is taken on 03/23/2023

Comparison of measured vs. calculated dose rate shows good consistency, results are within 45%. Calculated dose rates are higher than the measured dose rates

Results Dose rates

Steel and concrete extension blocks, all beam dump shield blocks, all PBW shield blocks, and the beam stop module were extracted.

Survey data is taken on 03/23/2023

CAK RIDGE

Results Dose rates

All dose rates are in mrem/hr.

Dose rates over the pit are at the plane of the pit. Dose rates outside the pit are at 1ft away and 5ft up.

)ak Ridge

National Laboratory

Survey data is taken on 03/23/2023

	Calculat	Measur	Ratio calculated/meas
Location	ed	ed	ured
At about 5ft from the floor and 1ft to the			
outside and upstream of the pit opening	210	173	1.21
At about 5ft from the floor and 1ft to the			
outside and downstream of the pit			
opening	380	420	0.9
At the upstream pit plane at 30 cm from			
the edge, inside the pit, left corner	400	500	0.8
At the upstream pit plane at 50 cm from			
the edge, inside the pit, above the beam			
centerline	3100	4500	0.69
At the upstream pit plane at 30 cm from			
the edge, inside the pit, right corner	2900	3400	0.85
At the downstream pit plane at 30 cm			
from the edge inside the pit, left corner	260	220	1.18
At the downstream pit plane at 50 cm			
from the edge inside the pit, above			
beam center line	4000	3400	1.17
At the downstream pit plane at 30 cm			
from the edge inside the pit, right corner	3100	3000	1.03

The calculation and measurements at the outside perimeter of the pit compared well enough. Measured dose rates compare to calculated dose rates within 31%.

Results Dose rates All shield blocks were extracted and new beam stop assembly installed.

Survey data is taken on 03/23/2023

Dose rates over the pit are at the plane of the pit. Dose rates outside the pit are at 1ft away and 5ft up.

			Ratio
	Calculat	Measur	calculated/meas
Location	ed	ed	ured
At about 5ft from the floor and 1ft to the			
outside and upstream of the pit opening,			
left corner	29	34	0.85
At about 5ft from the floor and 1ft to the			
outside and downstream of the pit			
opening, right corner	3	2.2	1.36
At the upstream pit plane at 30 cm from			
the edge, inside the pit, left corner	75	70	1.07
At the upstream pit plane at 30 cm from			
the edge, inside the pit, above the beam			
centerline	290	275	1.05
At the downstream pit plane at 30 cm			
from the edge inside the pit, left corner	25	20	1.25
At the pit middle, above beam center			
line	400	300	1.33
At the downstream pit plane at 30 cm			
from the edge inside the pit, right corner	190	130	1.46

Measured dose rates compared to calculated dose rates within 45%.

Conclusions

Extensive planning was done for beam stop and **PBW modules replacement**

- Neutronics analyses to evaluate the residual dose rates are performed for each replacement stage
- Work not always go as planned change of the exchange process
- Both components are successfully replaced
- Comparisons of dose rate measurements vs calculated dose rates show good consistency within factor 1.5

