

Status of the ELI Beamlines facility

R. Versaci on behalf of the ELI Beamliens RP group

SATIF-16, 28-31 May 2024, LNF

eli

ELI ERIC

The Extreme Light Infrastructure (ELI)

- Research Infrastructure, part of the European ESFRI Roadmap
- 1.1.2011 start of parallel implementation of 3 sites
- 30.4.2021 ELI ERIC founded
- Founding members: CZ, HU, IT, LT
- Founding observers: DE, BG, RO
- Countries interested in joining: CH, ES, PL, PT

ELI Sites

• ELI ALPS - Hungary

- Ultrafast physical processes
- •Attosecond measurement techniques
- ELI Beamlines Czech Republic
 - Secondary sources
 - Medical imaging and diagnostics, radiotherapy

• ELI NP – Romania

- Photonuclear Physics
- •Exotic nuclei

ELI ALPS

www.eli-alps.hu

- "Attosecond Light Pulse Source"
- Szeged, Hungary
- Light sources between THz (10¹² Hz) and X-ray (10¹⁸ - 10¹⁹ Hz) frequency range
- 5 laser systems
- 8 experimental stations

Applications:

- Attosecond studies in atomic and molecular dynamics
- Nanophysics, materials science
- Plasma physics
- Radiobiology
- THz spectroscopy

ELI NP

www.eli-np.ro

Magurele, Romania

- 2 laser systems
- Intensities 10²³-10²⁴ W/cm²

Applications:

- Photonuclear reactions
- Exotic nuclear physics
- Astrophysics
- Characterization of

laser – target interaction

ELI NP

www.eli-np.ro

ELI Beamlines

www.eli-beams.eu

Integrated in the ERIC from 1.1.2023

Located on the outskirts of Prague

30 May 2024

ELI Beamlines

www.eli-beams.eu

4 PW class laser Multiple commercial lasers

7 secondary sources, like X-rays, e-, and Ion Accelerators

10 user stations

350 international staff 31'000 m² area

ELI Beamlines

www.eli-beams.eu

ELI Beamlines lasers

eli ELI Beamlines experimental stations

ELIMAIA

LUIS

E2

eli ELI Beamlines experimental stations

Ion acceleration

- Available for users
- 1st phase: protons up to 60 MeV
- Later 200-300 MeV

Plasma physics

- Available for users
- Mixed source with large angle emission

eli ELI Beamlines experimental stations

From spontaneous to coherent electron radiation

- Commissioning ongoing
- Up to 600 MeV electron, 1% spread
- $\lambda ph \sim 2-5nm$ (water-window)

Electron acceleration

- Available for users
- 1st phase: multi-GeV
 - 1.5 GeV in the last campaign

ELI Beamlines experimental stations

E2

- First beam last month
- Electrons up to 2 GeV
- X rays used for experiments

ALFA

- Available for user
- 1kHz repetition rate
- ~150 MeV in spring 2022

eli

Source terms overview

- Pulsed length of primary pulse ~10⁻¹⁴s
- Low repetition rate: 0.1 Hz 1 kHz
- Mixed field: e-, e+, γ , p, n, μ
- Wide spread of energies (10⁰ eV to 10⁹ eV)
- Extremely high dose rate in a single pulse
- Strong magnetic field (10² kV/m)

Source term not well known!

- Subject of research
- Strongly dependent on the experiment

RP Standard Measures

- Monte Carlo assessment
- People not allowed in the experimental area Personal Safety Interlock in place
- Monitoring system of ionizing radiation

Monitoring system

- Monitoring system of ionizing radiation (γ , n)
 - In the experimental area to "control the experiments" and benchmark simulations
 - In the control room and service areas for RP purposes

Personal Safety System

Laser halls	Beam transport	Experimental halls
 LSS Laser hazard only Inhouse Running since 2018 	 PSI Laser & vacuum hazard 3 BT running 1 BT installed 	 PSI Laser, radiation, HV, gas Rockwell automation Fully installed and working since February 2024

Personal Safety System

Small setup, commercial Class 4 laser "Astrella"

- Rep. rate 1 kHz, water jet target
- Expected source term: protons, 1 MeV
- Experimental chamber wall: 1 cm thick steel No measurable radiation expected outside

Experimental data:

12 μSv/h rate detected by EPD in close chamber vicinity Cumulative dose collected by OSLs up to 200 μSv/over 12 hour operation

"Short Focal Length" experiment

- Test of target systems
- L3 laser HAPLS, gradual ramp up to 12J, 3.10⁻¹⁴ s laser pulse length
- Single shots to sequences at 3.3 Hz for 20 s
- Production of X-rays and of low energy electrons
- Expected source term: 10⁻⁷C of electrons/shot, Maxwell-Boltzmann T=1.4 MeV

No radiation expected above background level ~0.1 µSv/h

- Active systems:
 - LB6419-PANDORA
 - EPDn
 - Sensitive to γ only: EPDg, CryRad
- Passive systems
 - Bubble detectors
 - CR39
 - Sensitive to γ only: OSL, DIS
- At beam height over 2π

HE neutron

LE neutron

Gamma

While no radiation expected above background level ~0.1 μ Sv/h, on day 1, active detector measured ~3 μ Sv/h of neutrons about 20 MeV

LB6419 - Pandora

Data re-analyzed together with A. Leuschner Re-analysis based on

- energy deposition spectrum
 - timing of the signal

LE neutron
HE neutrons
gamma

Conclusions

Until now:

- The interlock and monitoring systems worked perfectly
- Ambient dose levels in populated areas compatible with background
- Designed shielding and protection measures proved adequate

MC simulations:

- As solid as the input, often the generated radiation is more energetic than expected
- Cannot reproduce campaigns:

too many unknown parameters, shot-to-shot differences

Important:

- Higher safety factor than in conventional facilities is needed
- Interpretation of detector readings requires critical thinking

Conclusions

"This machine is perfectly safe... As long as you never press this button."