From Bonner Spheres to real-time single-moderator neutron spectrometers

Roberto Bedogni

INFN-LNF Frascati Italy

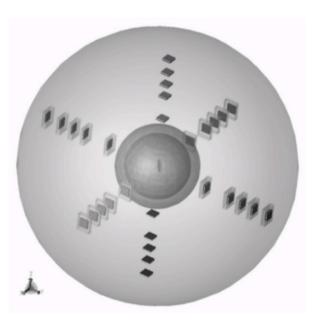
Talk breakdown

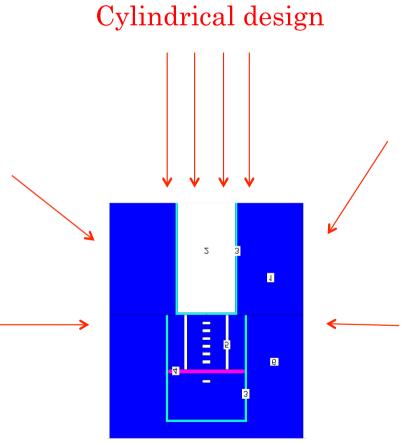
- Bonner Spheres fundamentals
- Single Moderator Neutron Spectrometers (SMNS)
- SMNS internal sensors and readout
- The Cylindrical Spectrometer CYSP (2012)
- NCT-WES (Neutron Capture Therapy Wide Energy Spectrometer) (2021)
- The Spherical Spectrometer SP² (2013)
- Tetra-Ball (2024)

Bonner Spheres fundamentals

Physics Reports 875 (2020) 1–65

- BS (1960) still are the "state of art" for RP measurements over 10+ decades in energy
- Isotropic response
- Simple operation
- Very accurate: better than 5% for fluence in large bins
- Detector can be changed to match the field (intensity, photon component, pulsed)
- Resolving power is limited by the shape of the response functions
 - The unfolding problem is "under-determined"
 - Strategies needed to provide the "missing information" to the unfolding process
- Unfolding needs skills, but, after 60+ y, unfolding methods are now better established:
 - established ways to provide pre-information according to the specific problem
 - o uncertainty treatment
 - o codes became "friendly" / training material online / unfolding courses / exercises
 - Modern codes are e.g. FRUIT (INFN-LNF), UMG package Maxed, Gravel
- Sequential irradiations time consuming unsuited for real time monitor

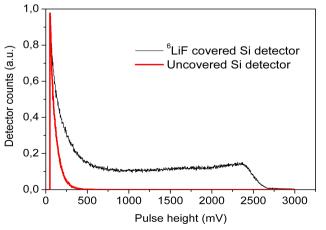




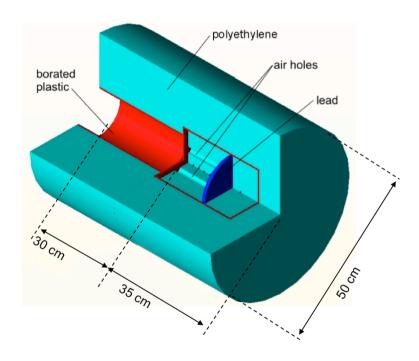
Single Moderator Neutron Spectrometers: the ideas

Spherical design

SMNS internal sensors and readout

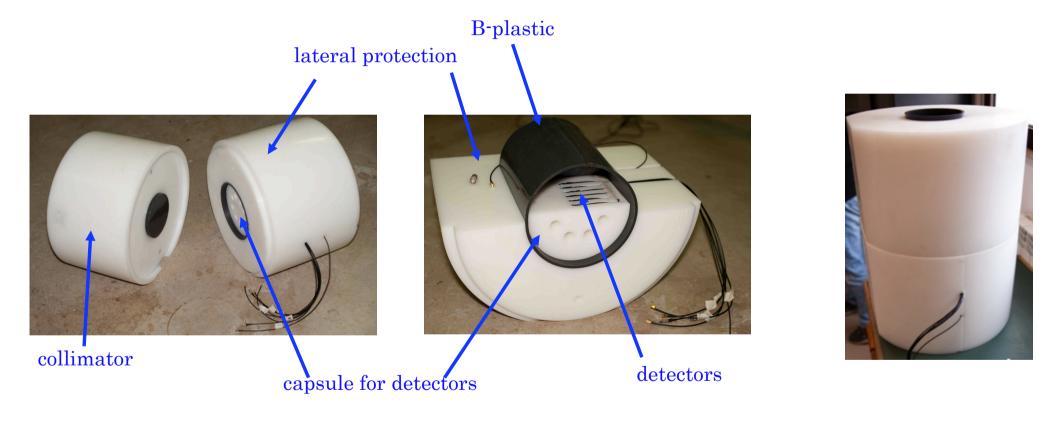

- Thermal neutron sensors are semiconductors coated with 30 μm $^6{\rm LiF}$
 - □ Si diode for calibration-grade fields
 - □ SiC diodes for intense neutron fields
- Custom multi-detector analog board (charge preamp. + shaper amp.)
- Individually calibrated in ENEA/INFN HOTNES reference thermal neutron field.
- Digital elaboration using commercial digitizer and laptop

NIM A 1018 (2021) 16585 NIM A 780 (2015) 51-54 Radiat. Prot. Dosim. 161 1-4 (2014) 229-232 Eur. Phys. J. Plus 137 (2022) 1358

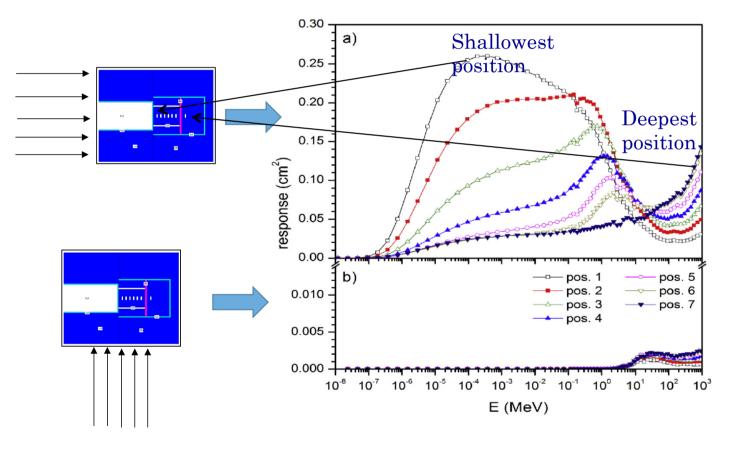


The Cylindrical Spectrometer CYSP

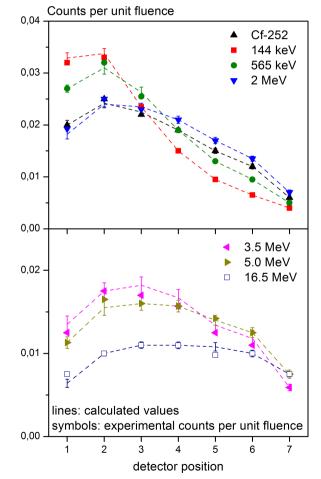
- Designed to provide a sharply directional response
 - collimating aperture
 - sensitive capsule laterally protected by PE + Borated rubber
- Seven TND at different depths + 1 cm lead
- Air holes enhance response of deeper detectors
- Mimic a 7-sphere BSS
- Refs:


Radiat. Meas. 82 (2015) 47-51 NIM A 782 (2015) 35-39 Eur. Phys. J. Plus (2015) 130: 24 Radiat. Prot.Dosim.161(2014) 37-40.

The Cylindrical Spectrometer CYSP



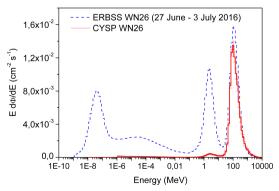
The Cylindrical Spectrometer CYSP



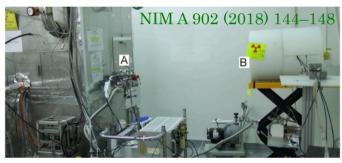
Response directionality

SATIF-16 28-31 May 2024 @ INFN-LNF Frascati

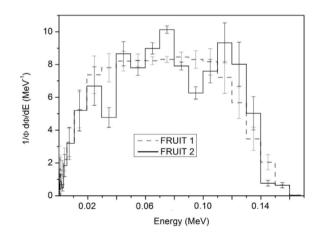
Response validation @ NPL

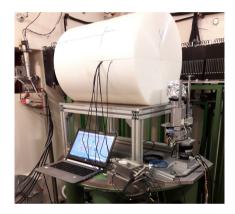


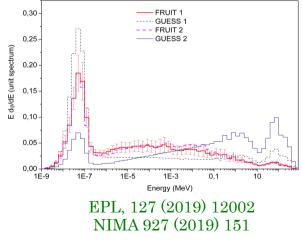
Some applications of CYSP



Measuring the vertical component of cosmic neutrons

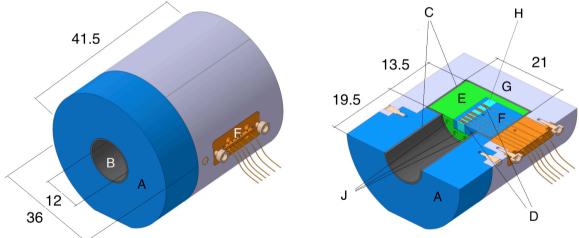



Neutron spectrum from the Liquid Li p,n target @ SOREQ



Ep=1.92 MeV, 0.5 mA x 0.1 ms @ 500 Hz

INES neutron beam-line @ ISIS (RAL, UK)

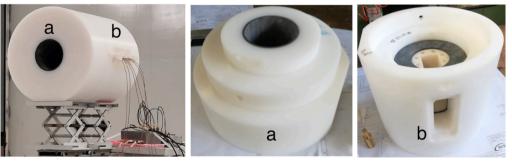


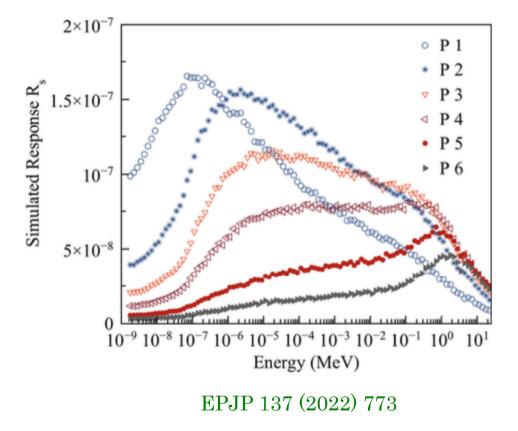
The advent of AB-BCNT is requiring fast spectrometry techniques for beam monitoring

- Directional response would be desirable to reject room scatter
- INFN project ENTER_BCNT designed a modified CYSP with the objectives:
 - □ Emphasise resolution in epithermal domain
 - **Reduce the weight and improve portability**
 - □ Limit the energy limit to 20 MeV
 - □ Implement rad-hard sensors

Detector depths within capsule 7.5, 20.5, 33.5, 46.5, 66.5, 86.5 mm

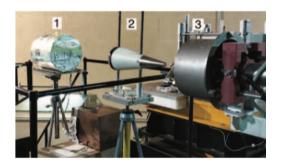
- Advances in BCNT, 2023 (IAEA book)
- Modern Neutron Detection IAEA-TECDOC-1935 (2020)
- Europhys. Lett. 134, 42001 (2021).

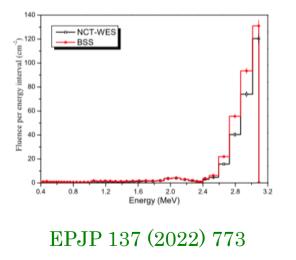


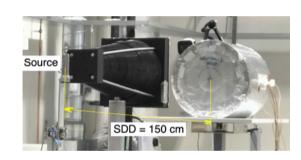


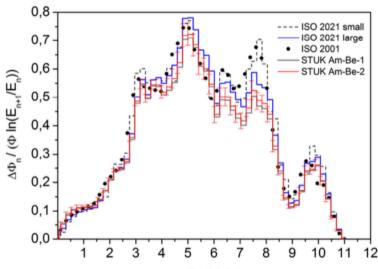
Response verification at NPL

- 71.5, 144.2, 565.1, 841.9, 1200.4 keV
- $R_{calculated}$ agrees with vs. $R_{measured}$ within 2%


SATIF-16 28-31 May 2024 @ INFN-LNF Frascati




Some applications of NCT-WES


ENEA Fast Neutron Generator in D-D

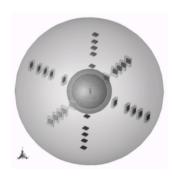
EPJP 139 (2024) 384

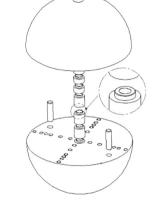
E	(MeV)
n	· · · · · /

Source	B _{nominal} (s ⁻¹) 12/7/2023	B _{measured} (s ⁻¹) 12/7/2023
Cf-1	$9.12 imes 10^6$	$(1.08 \pm 0.03) \times 10^7$
Cf-2	2.82×10^7	$(2.98 \pm 0.08) \times 10^7$
Am-Bc-1	2.09×10^6	$(1.98 \pm 0.05) \times 10^6$
Am-Be-2	1.99×10^{7}	$(1.92 \pm 0.05) \times 10^7$

Characterizing n sources

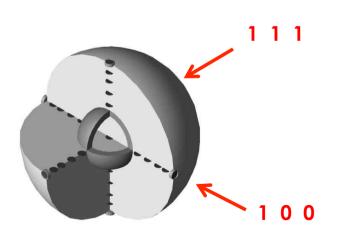
at Finnish neutron

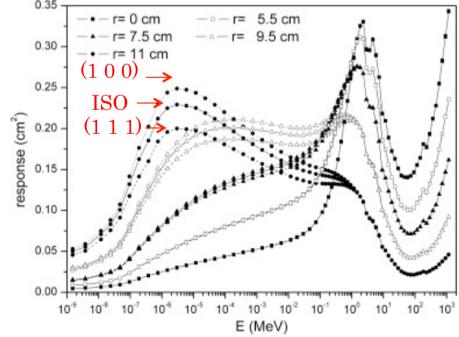

metrology center (STUK)



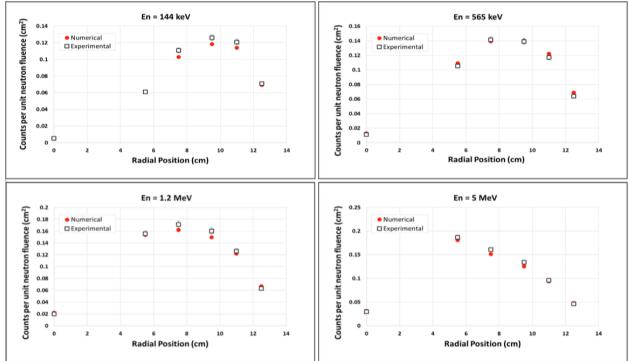
Spherical Spectrometer: the history

- 1997 B-loaded plastic scintillator sphere + light sensors (V. Vylet et al.) IRPA Regional Symposium, Prague 1999
- 1999 S Yamaguchi, et al. *Spherical neutron detector for space neutron measurements* NIM A 422 (1999) 600.
- 2008 30 cm PE sphere with 37 TLD pairs along the 3 axes. Averaging the detectors at the same radius gives nearly isotropic response NIMA 584 (2008) 196-203; NIMA 613 (2010) 127-133
- 2011 Prototypal PE sphere with 31 activation foils Radiat. Meas. 46 (2011) 1712-1715
- 2012 Added 1 cm thick internal lead shell for high-E NIMA 677 (2012) 4-9
- 2014 SP² Spherical Spectrometer, meV-GeV, real-time *NESCOFI, NEURAPID INFN projects*



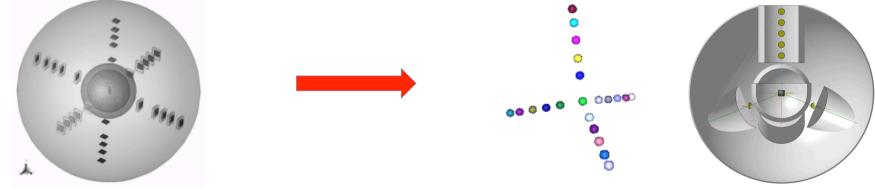

NIMA 767 (2014) 159-162 EPJP 130 (2015) 24

- 25 cm diameter sphere including a one cm lead insert
- 31 thermal neutron detectors (customised: usually 1-cm² Si-diode + ⁶LiF)
- Response matrix is in principle direction-dependent
- Studies to evaluate the impact of this "imperfect" isotropy
- Single exposure
- Mimics a 6-sphere BSS



The Spherical Spectrometer \mathbf{SP}^2

- NPL UK mono-energetic beams $144~{\rm keV},\,565~{\rm keV},\,1.2~{\rm MeV}$ and $5~{\rm MeV}$
- Shadow cone technique to measure scattering
- Calibration distance $\approx 2 \text{ m}$
- Fluence per irradiation $\approx 10^5 \text{ cm} \cdot 2$



- INFN-LNF papers on SMNS: 398 citations (Google Scholar)
- Prototypes openly inspired by INFN SMNS:
 - Y. Zou, Construction and test of a single sphere neutron spectrometer based on pairs of 6Li-and 7Liglass scintillators, Radiation Measurements, 127 (2019) 106148.
 - W. Zhang et al., Development of a portable Single Sphere Neutron Spectrometer, Radiation Measurements, 140 (2021) 106509.
 - X. Li et al Design and verification of a multi-layer single-sphere neutron spectrometer with water as the moderator. JINST 16 (2021) T12010
 - S. Paulet al. Neutron spectrometry and dosimetry using a multi-shell Single Sphere Neutron Spectrometer with thermo-luminescent and optically stimulated luminescent detectors. NIM A 1053 (2023) 168395.
- Two private companies replicated SP² for commercial purposes

Tetra-Ball

CMS BRIL collaboration

- Measuring the n background in CMS during LHC Phase 2 High-Luminosity
- 4000 fb⁻¹ @ 7 TeV per beam (BRIL TDR)
- Accumulated n fluence up to 10^{13} cm⁻²
- Instantaneous fluence rate up to 10^{5} - 10^{6} cm⁻² s⁻¹
- Less than ten portable spectrometers
- Rad-hard sensors: pairs of SiC (7.6 mm²): one bare, one coated with 30 μm ⁶LiF
- Developing an isotropic, spherical SMNS, with less detectors than SP²

See next talk on Tetra-Ball by M.A. Caballero

- ✓ Bonner Spheres evolved in single moderator spectrometers, suited for real-time monitoring, with BS-like performance
- ✓ A cylindrical, directional design: CYSP, NCT-WES Relevant perspective: monitoring AB-BNCT therapeutic beams
- ✓ A spherical design suited for RP applications: Successful design Replicated in various formats by third parties for research and market Relevant perspective (T-Ball): High-flux applications at particle accelerators

Conclusions & perspectives

