
DARK MATTER DIRECT DETECTION 
G I U L I A N A  F I O R I L L O  
U N I V E R S I TÀ  D E G L I  S T U D I  D I  N A P O L I  “ F E D E R I C O  I I ”  &  I N F N

IFAE 2023



EVIDENCE FOR DARK MATTER

OBSERVATIONAL EVIDENCE FOR DM AT ALL SCALES
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PRECISION COSMOLOGY

A DARK UNIVERSE

▸ ΛCDM Cosmological Model 

▸  

▸  

▸  difference between the 
baryon density and the matter 
density  

▸ DM accounts for 85% of total 
matter in Universe

Ωbh2 = 0.02237 ± 0.00015

ΩMh2 = 0.143 ± 0.0011

100σ

Planck Collaboration, Astron. Astrophys. 641, A1 (2020)

6 PARAMETER FIT TO ΛCDM 

Ordinary Matter
5%

Dark Matter
26%

Dark Energy
69%
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THE NATURE OF DARK MATTER

WHAT IS DARK MATTER?

WIMP paradigm: a good place to start looking  

The Minimal WIMP Model Basic Assumptions: 

๏ Single particle that does not interact with itself 

๏ Interacts weakly with Standard Model 

๏ 2→2 annihilations primarily in s-wave 

๏ Annihilations set thermal abundance today

1 M⊙ = 1057GeV

(de Broglie 
wavelength of 
galaxy) 

A spectrum spanning 80 orders of magnitude
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DARK MATTER IN THE MILKY WAY

Cosmology: Dark matter and dark energy 
Robert Caldwell & Marc Kamionkowski 
Nature 458, 587-589(2 April 2009)

WIMP WIND
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DARK MATTER IN THE MILKY WAY

WIMP WIND ON EARTH
▸ Goodman & Witten (1985): “Detectability 

of certain dark matter candidates”  

 

๏  galactic dark matter halo local 
density  

๏  relative velocity wrt terrestrial 
detector 

๏  elastic scattering off target nuclei
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DM DIRECT DETECTION

WIMP-NUCLEON SCATTERING
▸ Non-relativistic scattering 

 

 

 

▸ Contact interaction independent 
of momentum exchange (nucleus 
as a particle, with charge and spin) 

➡ standard SI/SD description 

➡ nuclear form factors generally 
included

v/c ≃ 10−3

E0 =
1
2

mχv2; r =
4mχmN

(mχ + mN)2

ER = E0r
(1 − cos θ)

2

σχ ∼ A2

F2(q2)

dR
dER

=
R0

E0r
exp (−

ER

E0r ) × [S(ER)F2(q2)I

 Form factor 
 seasonal modulation 

 Interaction type

F2(q2)
S(ER)

I

mχ = 100 GeV σχ = 10−47 cm2

χ

WIMP
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DM DIRECT DETECTION

WIMP NUCLEON SI INTERACTION EXCLUSION LIMITS LANSCAPE

2021 Snowmass Cosmic Frontier Report, arXiv:2211.09978
▸ To improve sensitivity: 

๏ larger exposure M × T 
and lower background 

▸ To extend sensitivity at 
low mass WIMPs: 

๏ lower energy 
threshold 

▸ Minimum of the curve: 

๏ depends on target 
nuclei
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High mass



▸ To observe a signal which is: 

๏ very small: low recoil energies < 100 keV 

๏ very rare: <1 event/(kg y) at low masses and < 1 event/(t y) at high masses 

๏ buried in backgrounds with > 106 higher rates: 
• Muon-induced neutrons: NRs  
• Cosmogenic activation of materials/targets: ERs  
• Radioactivity of detector materials: NRs and ERs  
• Target intrinsic isotopes: ERs 

DM DIRECT DETECTION

EXPERIMENTAL CHALLENGE

electron recoils (ER)

nuclear recoils (NR)
γ, e- 

α, n 
χ

WIMP
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EXPERIMENTS

DEEP UNDERGROUND LABORATORIES

A. Ianni IDM2022
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EXPERIMENTS

DETECTOR TECHNOLOGIES

directional detector

scintillating crystal cryogenic bolometer single-phase noble liquid

dual-phase noble liquid TPC bubble chamber

APPEC DM Report, Rep. Prog. Phys. 85 (2022) 056201
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EXPERIMENTS: NOBLE LIQUIDS

LARGE EXPOSURE: NOBLE LIQUID TPC
▸ dual-phase Time Projection  Chambers  with 

multi-tonne liquid Xe, Ar targets 

▸ read out primary scintillation: “S1” + 
proportional gas scintillation from  drifted 
electrons: “S2” 

▸ 3D position reconstruction: 

▸ time difference between S1 and S2 gives Z 
position (few mm resolution) 

▸ pattern of S2 light gives XY position (~1cm 
resolution) 

▸ background identification + passive suppression  

▸ zeptobarn (10-45 cm2) to yoctobarn (10-48 cm2) 
sensitivity to WIMP dark matter

drift tim
e
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EXPERIMENTS: NOBLE LIQUIDS

SENSITIVE TO A BROAD RANGE OF WIMP MASSES
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Low mass

High mass



XENON DETECTORS
XENON 10 (LNGS) 

  DARWIN, PandaX-xT: 50 t  
arXiv:2203.02309v1

ZEPLIN II (Boulby)10 kg 

100 kg 

XENON 100 (LNGS)

LUX (250 kg,  
        SURF),  

1000 kg 

PANDA-X  
       (500 kg, CJPL) 

XENON 1T  
       (1t, LNGS) 

2010

2015

2020

ZEPLIN III (Boulby)

10000 kg 

LZ: (7t, SURF)
XENONnT: (6t, LNGS)

PandaX-4:(4t, CJPL)

    Credits:  Jocelyn Monroe, ESPP, Granada 2019                                                                                                                                    

XMASS  
(0.8t, Kamioka) 

14

XE
N

O
N

:2
30

3.
14

72
9

E.
 A

pr
ile

 U
C

LA
 D

M
20

23PandaX-4T, PRL 127, 261802 (2021)  
LZ (2022) updated limit curve  
XENON1T, PRL 121, 111302 (2018)  
XENONnT (2023) arXiv:2303.14729 

LZ: best limit for high WIMP masses 
XENON: lowest background from ER

XLZD Consortium  
  formed



Phys. Rev. D 107, 063001 (2023)

ARGON DETECTORS

1000 kg 

10000 kg 

ArDM   
    (1t, LSC) 

DarkSide-50  
     (50 kg, LNGS) 

 ARGO: 400 t, SNOLAB

10 kg 

100 kg 

2010

2015

2020
            (50t, LNGS) 

100000 kg 

Global Argon 
Dark Matter 
Collaboration 
formed 

DarkSide-20k

DS50 low mass: 
leading SI limit at 

1.2-3.6 GeV/c2

LAr high mass: background discrimination 

Phys. Rev. D 98, 102006 (2018)
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    Credits:  Jocelyn Monroe, ESPP, Granada 2019                                                                                                                                    

DEAP-3600 
(3.6t, SNOLAB)

 Eur. Phys. J. C 81, 823 (2021)



DARKSIDE-20K

THE DARKSIDE-20K DETECTOR
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Outer Veto 
Cosmic ’s and showers  
600-ton atmospheric LAr

μ
Inner Veto 
Radiogenic ’s 
12-ton underground 
LAr

n

TPC 
Dark matter detector  
50-ton underground LAr/GAr 
(20-ton fiducial mass)

3.6 m

8 m



DARKSIDE-20K TECHNOLOGIES

NEUTRON TAGGING VIA Gd-LOADED ACRYLIC

▸ -rays (<8MeV) from  capture by Gd 

▸ -tagging efficiency ~90% 

▸ R&D finished and production started

γ n

n
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DARKSIDE-20K TECHNOLOGIES

LOW RADIOACTIVITY, HIGH EFFICIENCY SiPM PHOTOSENSORS

18

▸ Wafer delivery from LFoundry started in 
2022 

▸ Packaging and assembly for TPC sensors: 
Nuova Officina Assergi (NOA), about to 
start operations 

▸ Packaging and assembly for Veto sensors: 
RAL and Liverpool, UK  

▸ Several test facilities to qualify production: 
Naples, Liverpool, Edinburgh, AstroCent

1 PE

2 PE

TPC optical plane ( )  
525 PDUs

∼ 21 m2 Photo Detection Unit 
16 tiles arranged into 4 channels

Tile / photo-detector module 
24 SiPMs + signal amplifier



DARKSIDE-20K TECHNOLOGIES

LOW RADIOACTIVITY ARGON: URANIA & ARIA

19

 2) Cryogenic distillation at the ARIA facility  
Installed in the shaft of a coal mine  
Chemical purification rate: 1 t/day  
First module operated according to specs with nitrogen  
Run completed with Ar at the end of 2020: results to be published soon 
Full assembly about to start 
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 3) Qualification at Canfranc, DArT in ArDM  
A single-phase LAr detector with active 
volume ~1L, capable of measuring UAr to 
AAr 39Ar depletion factors of the order of 
1000 with 10% precision in weeks

URANIA

ARIA

DArT
LNGS 

1) UAr extraction at the URANIA plant.  
 ( -decay) suppressed by  in underground  

CO2 reservoir in Cortez, Colorado 
UAr extraction rate: 250-330 kg/day  
Expected argon purity at outlet: 99.99%

39Ar β ∼ 103



EXPERIMENTS: NOBLE LIQUIDS

HIGH MASS WIMP SI INTERACTION EXCLUSION LIMITS PROSPECTS
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EXPERIMENTS: NOBLE LIQUIDS

LOW MASS WIMP SI INTERACTION EXCLUSION LIMITS PROSPECTS

21

Sensitivity projection for a 1 ton-year exposure dualphase LAr TPC optimized for light dark matter searches 
through the ionization channel  

arXiv:2209.01177



EXPERIMENTS: CRYOGENIC CRYSTALS

LOW THRESHOLD: BOLOMETERS

E deposition → temperature rise ΔT ~ μK → requires detectors at mK 

▸ Sub-keV (< 100 eV) energy thresholds & background discrimination 

▸ Crystals: Ge, Si, CaWO4, NaI 

▸ T-sensors:  

๏ superconductor thermistors (highly doped superconductor): NTD 
Ge → EDELWEISS  

๏ superconducting transition sensors (thin films of SC biased near 
middle of normal/SC transition): TES → CDMS, CRESST, COSINUS

T0 E

χ

T-sensor

Target

C H A R G E  &  
P H O N O N S :

S U P E R C D M S
E D E LW E I S S

L I G H T  &  
P H O N O N S :

C R E S S T
C O S I N U S

22Cryogenic Experiments at mK Temperatures

• Advantages: high sensitivity to nuclear recoils

• measuring the full nuclear recoil energy in the phonon channel

• low energy threshold (keV to sub-keV), good energy resolution

• light/phonon and charge/phonon: nuclear vs. electron recoil discrimination
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Efficiency: > 99.9% 
E > 20keV

CRESST EDELWEISS CDMS

electron recoils

nuclear recoils



EXPERIMENTS: CRYOGENIC CRYSTALS

CRESST @LNGS
▸ Sub-GeV WIMP mass sensitivity 

▸ CRESST-III run 07/2016 - 02/2018 

๏ Target crystal mass: 23.6g 

๏ Gross exposure (before cuts): 5.7 kg days 

๏ Nuclear recoil threshold: 30 eV 

▸ Low Energy Excess, still being investigated 

๏ LEE observed “everywhere”, in particular in 
cryogenic experiments → one single 
common origin considered unlikely,  stress 
from crystal, sensor or holding. 

▸ Recent results in the ~100 MeV range for the 
DM mass and for both SI (Si, CaWO4) and SD 
(LiAlO2) interactions  

▸ Moving ahead to increase the exposure to 
consolidate the capability of light DM detection  

arXiv:2212.12513v1

23

Si2 wafer detector mass: 0.35g 
exposure: 55.06 g days 
nuclear recoil threshold:10 eV



EXPERIMENTS: IONIZATION DETECTORS

LOW THRESHOLD: SPC & CCD
▸ SPC: spherical 

proportional counter, 
light targets (H, He, 
Ne), pulse shape 
discrimination against 
surface events, low 
energy threshold 
(very low capacitance) 

▸ Skipper CCDs: low 
ionization energy, low 
noise, and particle 
tracks for background 
reduction, particle ID 
(DAMIC-M, SENSEI)  

24

NEWSG @LSM 
140 cm diameter copper sphere 
135 mbar of pure CH4 (110 g)

DAMIC-M @LSM
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EXPERIMENTS: BUBBLE CHAMBERS

THRESHOLD DETECTORS

PHYS. REV. D100,022001 (2019)
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▸ PICO (SNOLAB): superheated freon target, 
camera + acoustic readout, background 
rejection based on topology O(10-2) 

๏ PICO-60 SD WIMP-p best limit with 60 kg 
C3F8 target  

๏ PICO-40L new design running  

๏ PICO-500 planned 

▸ SBC (SNOLAB): Scintillating Bubble Chamber, 
superheated 10 kg Xe-doped LAr, cooled to 
130 K, piezoelectric sensors + cameras 
readout + SiPMs for scintillation signal  

๏ SBC-LAr10 demonstrator @Fermilab 
running in 2024, radio pure detector 
gearing up for first DM search @SNOLAB

Quasi background-free detection of sub-keV nuclear recoils:  
▸ Nucleation depends on NR threshold and target fluid: 

▸ Freon-based chambers ER-blind @ ~3 keV 
▸ Liquid-noble chambers ER-blind @ < 500 eV, (target 100 eV)

arXiv:2207.12400

Phys. Rev. D 100, 082006 (2019)



EXPERIMENTS: DIRECTIONAL DETECTORS

DIRECTIONALITY: 
THROUGH THE 
NEUTRINO FOG

26

‣ Directional detectors can 
separate neutrino and 
DM signals  

‣ n remains <2 even in the 
neutrino fog  

‣ fog becomes a positive: 
a source of guaranteed 
signal in DM experiment! 
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EXPERIMENTS: DIRECTIONAL DETECTORS

DIRECTIONALITY: THROUGH THE NEUTRINO FOG
▸ Mature technology: gaseous TPC with different readouts ➟ CYGNUS (10-1000 m3)

27

▸ R&D on several other techniques: 

๏ NEWSdm Nanometric track direction measurement in 
nuclear emulsions (exploit resonant light scattering using 
polarised light) 

๏ RED Columnar Recombination in liquid argon TPC 

๏ PTOLEMY Graphene target (nanoribbon or nanotubes)

CYGNO sensitivity to SI interactions (S. Piacentini, CERN March 2023)



DM DIRECT DETECTION

LIGHT DARK MATTER (SUB-GEV)

▸ DM mass kinematically accessible 
through inelastic interactions 
extracting substantial fraction of 
the DM kinetic energy:  

๏ DM-N scattering w/ Migdal  

๏ DM-e scattering  

๏ DM scattering w/ collective 
modes (e.g. phonons, magnons) 

28
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EXPERIMENTS: NOBLE LIQUIDS

DM-N SCATTERING w/ MIGDAL 
▸ Interactions between a neutral particle and a 

nucleus may result in atomic excitation or 
ionization 

▸ Migdal atomic relaxation can lead to keV 
electron recoil (ER) energy for sub-keV nuclear 
recoils (NRs) 

▸ Potential enhancement of low-mass dark 
matter sensitivity has been explored 

• LUX, PRL 122 131301 (2019) 

• XENON1T, PRL 123 241803 (2019), PRD 106 022001 (2022) 

• DarkSide50, PRL 130 101001 (2023) 

• EDELWEISS, PRD 106 062004 (2022) 

• CDEX-1B, PRL 123 161301 (2019) 

• SuperCDMS, arXiv: 2203.02594 

• and more … 

▸ This effect has not been definitively verified 

๏ MIGDAL @LLNL: 14.1MeV neutrons on LXe
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Analysis based on 
ionization significantly 
enhances the sensitivity 
in sub-GeV region

Ibe, et al, JHEP 03 (2018) 194

J. Xu UCLA DM 2023
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EXPERIMENTS: NOBLE LIQUIDS

DM-e SCATTERING 

▸ light DM-electron scattering 

▸ absorption of bosonic DM 
(axion-like particles and 
dark photons) 

▸ sterile neutrino-electron 
scattering

PRL 130, 101002 (2023)
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Light DM interactions with final state electrons 



WHAT NEXT? predictions for SI scattering cross sections (in plots of DM-proton cross section 
versus DM mass) for visible sector models

PROSPECTS 31
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PROSPECTS

WIMP SEARCH TIMELINE

32

circa 2023

Take as reference spin-independent cross section upper limits at 60 GeV WIMP mass 

6 orders of 
magnitude down, 
2 more to go



CONCLUSIONS

SUMMARY & OUTLOOK

❖ Direct dark matter detection experiments need to explore 
everywhere 

❖ WIMP still main paradigm: a variety of detector technologies in 
place to reach 𝛎 fog, add directional sensitivity to clear it 

❖ Light DM probed via scattering to 1 MeV (and via absorption to 
~eV), and possibly much lower 

❖ Ultra Light DM: a wealth of dedicated initiatives probing sub-eV 
masses (not covered here…)
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ADDITIONAL SLIDES
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DM DIRECT DETECTION

IRREDUCIBLE BACKGROUND: NEUTRINOS

‣ Coherent nuclear recoils from several astrophysical 
sources (Sun, atmosphere, and diffuse Supernovae) 

‣ DM/CEvNS signals not identical →  with high statistics, 
an experiment can overcome background uncertainty 
using spectral information

C. O’Hare, IDM 2022
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DM DIRECT DETECTION

NEUTRINO FOG

▸ Neutrino floor from CEvNS 
not a hard limit on direct 
detection sensitivity, rather 
a gradual penalty that can 
be overcome to some 
extent. 

▸ To clear the fog:  

๏ increase exposures 

๏ have multiple target 
nuclei 

๏ improve neutrino flux 
measurements 

๏ use signatures 

arXiv:2203.08084v1

The n index quantifies the diminishing gain in increasing 
exposure when limited by neutrinos: 
reducing the sensitivity by a factor of 10 requires increasing the 
exposure by at least 10n
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EXPERIMENTS: SCINTILLATING CRYSTALS

DAMA MODULATION SIGNAL

▸ Standard Halo Model predicted modulation A~0.02-0.1, t0=152.5 days  

▸ DAMA/NaI + DAMA/LIBRA-phase1 + phase2:  
๏ 2.86 t × yr (2 — 6 keV)  
๏       A = (0.00996 ± 0.00074) cpd/kg/keV χ2/dof = 130/155

annual modulation signature observed over 20 annual cycles (13.4 σ)

No signal from other direct detection experiments  

ANAIS-112 (LSC) & COSINE-100 (Y2L) offer direct test, no clear observation of modulation 

DAMA/LIBRA–phase2-empowered running with lower software energy threshold of 0.5 keV
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EXPERIMENTS: SCINTILLATING CRYSTALS

MODEL INDEPENDENT CHECK
ANAIS-112

SABRE NORTH

SABRE SOUTH

COSINE-100

COSINUS

PICOLON

TA K I N G  D ATA

COSINE-100,  
Phys. Rev. D. 106, 052005 

ANAIS-112,  
UCLA DM 2023
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EXPERIMENTS: SCINTILLATING CRYSTALS

MODULATION PERSPECTIVE (@LNGS)
▸ SABRE 

▸ Development of ultra-high purity NaI(Tl) crystals 
(3-5 kg, 0.1-0.3 dru in the ROI) 

▸ PoP at LNGS exploited successfully 40K 
tagging with sensitivity at the level of 1ppb 

▸ Two sites: LNGS in Northern and SUPL in 
Southern hemisphere 

▸ Passive shielding (North) + active veto 
(South) 

▸ COSINUS 

▸ NaI detectors operated as cryogenic 
calorimeters  

▸ dual readout of heat and scintillation light 

▸ construction phase, several prototypes, mass 
60g ⇾ 110g 

▸ COSINUS-1π: 𝒪(100 kg days) to know whether 
DAMA sees a nuclear recoil signal or not (low 
threshold essential)

Eur. Phys. J. C (2019) 79: 363

exposure of 100 kg days

exposure of 150 kg yrs

Cosinus, LoI, June 2019
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DM DIRECT DETECTION

WIMP NUCLEON SD INTERACTION EXCLUSION LIMITS LANSCAPE

2021 Snowmass Cosmic Frontier Report, arXiv:2211.09978
▸ Spin-dependent phase space is wide-

open at lower masses but technology 
to probe deep at 10 – 100 GeV/c2 is 
well-developed 

๏ PICO superheated bubble 
chambers Freon (C3F8) probe 
proton coupling  

๏ LXe TPC detectors cover n-
coupling, but the xenon neutrino 
fog is decades higher than the 
fluorine neutrino fog 

๏ EDELWEISS, SuperCDMS n-
coupling at lower masses CRESST 
is exploring new SD crystals with 
Lithium  

๏ New technology could be a liquid/
solid phase change detector like 
supercooled H2O
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DM DIRECT DETECTION

WIMP-NUCLEON SCATTERING IN NREFT
▸ More general 

description by non-
relativistic effective field 
theory 

▸ expansion parameters: 
 and   

▸  
is the momentum 
exchange  

▸  is some large scale 
involved (DM mass, 
nucleus mass, or a heavy 
mediator mass)

v/c ≃ 10−3 | ⃗q | /mM

| ⃗q | ≃ O(10 − 100 MeV)

mM

relativistic interactions constructed as bilinear products of the available 
scalar and four-vector amplitudes (20 effective Lagrangians)

PHYSICAL REVIEW C 89, 065501 (2014)
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