GIULIANA FIORILLO UNIVERSITÀ DEGLI STUDI DI NAPOLI "FEDERICO II" & INFN

DARK MATTER DIRECT DETECTION

IFAE 2023

EVIDENCE FOR DARK MATTER

OBSERVATIONAL EVIDENCE FOR DM AT ALL SCALES

Galactic Clusters

A DARK UNIVERSE

- ACDM Cosmological Model
 - $\Omega_b h^2 = 0.02237 \pm 0.00015$
 - $\Omega_M h^2 = 0.143 \pm 0.0011$
- 100σ difference between the baryon density and the matter density
- DM accounts for 85% of total matter in Universe

WHAT IS DARK MATTER? A spectrum spanning 80 orders of magnitude

WIMP paradigm: a good place to start looking

The Minimal WIMP Model Basic Assumptions:

- Single particle that does not interact with itself
- Interacts weakly with Standard Model
- $2 \rightarrow 2$ annihilations primarily in s-wave
- Annihilations set thermal abundance today

DARK MATTER IN THE MILKY WAY

WIMP WIND ON EARTH

Goodman & Witten (1985): "Detectability of certain dark matter candidates"

$$\frac{dR}{dE_R} = N_T \frac{\rho_{\chi}}{m_{\chi}} \times \int dv f(v) v \frac{d\sigma_{\chi}}{dE_R}$$

- ρ_{χ} galactic dark matter halo local density
- v relative velocity wrt terrestrial detector
- σ_{χ} elastic scattering off target nuclei

 $\Phi \simeq \frac{10^5}{\mathrm{s}\,\mathrm{cm}^2} \times \left(\frac{100\,\mathrm{GeV}}{m_{\chi}}\right)$

WIMP-NUCLEON SCATTERING

Non-relativistic scattering $v/c \simeq 10^{-3}$

$$E_0 = \frac{1}{2} m_{\chi} v^2; \quad r = \frac{4m_{\chi} m_N}{(m_{\chi} + m_N)^2}$$
$$E_R = E_0 r \frac{(1 - \cos \theta)}{2}$$

- Contact interaction independent of momentum exchange (nucleus as a particle, with charge and spin)
 - standard SI/SD description
 - nuclear form factors generally included

$$\frac{dR}{dE_R} = \frac{R_0}{E_0 r} \exp\left(-\frac{E_R}{E_0 r}\right) \times [S(E_R)F^2(q^2)I]$$

 $F^2(q^2)$ Form factor $S(E_R)$ seasonal modulation I Interaction type

WIMP NUCLEON SI INTERACTION EXCLUSION LIMITS LANSCAPE

- To improve sensitivity:
 - larger exposure M × T and lower background
- To extend sensitivity at low mass WIMPs:
 - lower energy threshold
- Minimum of the curve:
 - depends on target nuclei

- very small: low recoil energies < 100 keV</p>
- very rare: <1 event/(kg y) at low masses and < 1 event/(t y) at high masses
- buried in backgrounds with > 10⁶ higher rates:
 - Muon-induced neutrons: NRs
 - Cosmogenic activation of materials/targets: ERs
 - Radioactivity of detector materials: NRs and ERs
 - Target intrinsic isotopes: ERs

DEEP UNDERGROUND LABORATORIES

DETECTOR TECHNOLOGIES

LARGE EXPOSURE: NOBLE LIQUID TPC

- dual-phase Time Projection Chambers with multi-tonne liquid Xe, Ar targets
- read out primary scintillation: "S1" + proportional gas scintillation from drifted electrons: "S2"
- ▶ 3D position reconstruction:
 - time difference between S1 and S2 gives Z position (few mm resolution)
 - pattern of S2 light gives XY position (~1cm resolution)
- background identification + passive suppression
- zeptobarn (10⁻⁴⁵ cm²) to yoctobarn (10⁻⁴⁸ cm²) sensitivity to WIMP dark matter

EXPERIMENTS: NOBLE LIQUIDS

SENSITIVE TO A BROAD RANGE OF WIMP MASSES

XENON DETECTORS

LZ: best limit for high WIMP masses XENON: lowest background from ER

14

ARGON DETECTORS

LAr high mass: background discrimination ¹⁵

NEUTRON TAGGING VIA Gd-LOADED ACRYLIC

- γ-rays (<8MeV) from n capture by Gd</p>
- *n*-tagging efficiency ~90%
- R&D finished and production started

LOW RADIOACTIVITY, HIGH EFFICIENCY SiPM PHOTOSENSORS

TPC optical plane ($\sim 21 \text{ m}^2$) 525 PDUs

Photo Detection Unit 16 tiles arranged into 4 channels

Tile / photo-detector module 24 SiPMs + signal amplifier

- Wafer delivery from LFoundry started in 2022
- Packaging and assembly for TPC sensors:
 Nuova Officina Assergi (NOA), about to start operations
- Packaging and assembly for Veto sensors: RAL and Liverpool, UK
- Several test facilities to qualify production: Naples, Liverpool, Edinburgh, AstroCent

LOW RADIOACTIVITY ARGON: URANIA & ARIA

1) UAr extraction at the URANIA plant.

³⁹Ar (β -decay) suppressed by ~ 10³ in underground CO2 reservoir in Cortez, Colorado UAr extraction rate: 250-330 kg/day Expected argon purity at outlet: 99.99%

3) Qualification at Canfranc, DArT in ArDM A single-phase LAr detector with active volume ~1L, capable of measuring UAr to AAr ³⁹Ar depletion factors of the order of 1000 with 10% precision in weeks

Installed in the shaft of a coal mine Chemical purification rate: 1 t/day

First module operated according to specs with nitrogen Run completed with Ar at the end of 2020: results to be published soon Full assembly about to start

HIGH MASS WIMP SI INTERACTION EXCLUSION LIMITS PROSPECTS

LOW MASS WIMP SI INTERACTION EXCLUSION LIMITS PROSPECTS

Sensitivity projection for a 1 ton-year exposure dualphase LAr TPC optimized for light dark matter searches through the ionization channel

EXPERIMENCES OF CONTRACTOR OF

WIMP Direct Detection – Event by Event Discrimination EDELWEISS (France) und CDMS (USA) Dark Matter Proje

E deposition \rightarrow temperature rise $\Delta T \sim \mu K \rightarrow$ re

- Sub-keV (< 100 eV) energy thresholds & background discrimination</p>
- Crystals: Ge, Si, CaWO4, Nal
- T-sensors:
 - superconductor thermistors (highly doped superconductor): NTD Ge → EDELWEISS

100

• superconducting transition sensors (thin films of SC biased near middle of normal/SC transition): TES → CDMS, CRESST, COSINUS

CRESST @LNGS

- Sub-GeV WIMP mass sensitivity
- **CRESST-III** run 07/2016 02/2018
 - Target crystal mass: 23.6g
 - Gross exposure (before cuts): 5.7 kg days
 - Nuclear recoil threshold: 30 eV
- Low Energy Excess, still being investigated
 - LEE observed "everywhere", in particular in cryogenic experiments → one single common origin considered unlikely, stress from crystal, sensor or holding.
- Recent results in the ~100 MeV range for the DM mass and for both SI (Si, CaWO4) and SD (LiAlO2) interactions
- Moving ahead to increase the exposure to consolidate the capability of light DM detection

LOW THRESHOLD: SPC & CCD

NEWSG @LSM

140 cm diameter copper sphere 135 mbar of pure CH4 (110 g)

WIMP exclusion limit (S140@LSM, 135mbar CH4)

 $m_{\chi} (\text{GeV})$

 Skipper CCDs: low ionization energy, low noise, and particle tracks for background reduction, particle ID (DAMIC-M, SENSEI)

THRESHOLD DETECTORS

Quasi background-free detection of sub-keV nuclear recoils:

- Nucleation depends on NR threshold and target fluid:
 - ▶ Freon-based chambers ER-blind @ ~3 keV
 - Liquid-noble chambers ER-blind @ < 500 eV, (target 100 eV)</p>

ДB

ΧX

CF₄

- PICO (SNOLAB): superheated freon target, camera + acoustic readout, background rejection based on topology O(10-2)
 - PICO-60 SD WIMP-p best limit with 60 kg C₃F₈ target
 - PICO-40L new design running
 - PICO-500 planned
- **SBC** (SNOLAB): Scintillating Bubble Chamber, superheated 10 kg Xe-doped LAr, cooled to 130 K, piezoelectric sensors + cameras readout + SiPMs for scintillation signal
 - SBC-LAr10 demonstrator @Fermilab running in 2024, radio pure detector gearing up for first DM search @SNOLAB

arXiv:2207.12400

WIMP Mass [GeV/c²]

Phys. Rev. D 100, 082006 (2019)

EXPERIMENTS: DIRECTIONAL DETECTORS

DIRECTIONALITY: THROUGH THE NEUTRINO FOG

- Directional detectors can separate neutrino and DM signals
- n remains <2 even in the neutrino fog
- fog becomes a positive: a source of guaranteed signal in DM experiment!

arXiv:2109.03116

DIRECTIONALITY: THROUGH THE NEUTRINO FOG

► Mature technology: gaseous TPC with different readouts → CYGNUS (10-1000 m³)

- R&D on several other techniques:
 - NEWSdm Nanometric track direction measurement in nuclear emulsions (exploit resonant light scattering using polarised light)
 - **RED** Columnar Recombination in liquid argon TPC
 - PTOLEMY Graphene target (nanoribbon or nanotubes)

LIGHT DARK MATTER (SUB-GEV)

- DM mass kinematically accessible through inelastic interactions extracting substantial fraction of the DM kinetic energy:
 - DM-N scattering w/ Migdal
 - DM-e scattering
 - DM scattering w/ collective modes (e.g. phonons, magnons)

$$E_{\rm kin} = \frac{1}{2} m_{\rm DM} v_{\rm DM}^2 \sim 1 \ \rm eV \left(\frac{m_{\rm DM}}{1 \ \rm MeV}\right)$$

DM-N SCATTERING w/ MIGDAL

- Interactions between a neutral particle and a nucleus may result in atomic excitation or ionization
- Migdal atomic relaxation can lead to keV electron recoil (ER) energy for sub-keV nuclear recoils (NRs)
- Potential enhancement of low-mass dark matter sensitivity has been explored
 - LUX, PRL 122 131301 (2019)
 - XENON1T, PRL 123 241803 (2019), PRD 106 022001 (2022)
 - DarkSide50, PRL 130 101001 (2023)
 - EDELWEISS, PRD 106 062004 (2022)
 - CDEX-1B, PRL 123 161301 (2019)
 - SuperCDMS, arXiv: 2203.02594
 - and more ...
- This effect has not been definitively verified
 - MIGDAL @LLNL: 14.1MeV neutrons on LXe

ark

à 10

10-43

0.030.05

DS50 NO 2018

DS50 OF 2018

0.1

0.5

 m_{DM} [GeV/c²]

0.3

^Dhys. Rev. D 107, 063001 (2023)

29

10

3

J. Xu UCLA DM 2023

DM-e SCATTERING

Light DM interactions with final state electrons

light DM-electron scattering

- absorption of bosonic DM (axion-like particles and
- sterile neutrino-electron

30

35

PRL 130, 101002 (2023)

WIMP SEARCH TIMELINE

Take as reference spin-independent cross section upper limits at 60 GeV WIMP mass

32

SUMMARY & OUTLOOK

Direct dark matter detection experiments need to explore everywhere

WIMP still main paradigm: a variety of detector technologies in place to reach v fog, add directional sensitivity to clear it

Light DM probed via scattering to 1 MeV (and via absorption to ~eV), and possibly much lower

Ultra Light DM: a wealth of dedicated initiatives probing sub-eV masses (not covered here...)

ADDITIONAL SLIDES

DM DIRECT DETECTION

- Coherent nuclear recoils from several astrophysical sources (Sun, atmosphere, and diffuse Supernovae)
- DM/CEvNS signals not identical → with high statistics, an experiment can overcome background uncertainty using spectral information

NEUTRINO FOG

- Neutrino floor from CEvNS not a hard limit on direct detection sensitivity, rather a gradual penalty that can be overcome to some extent.
- To clear the fog:
 - increase exposures
 - have multiple target nuclei
 - improve neutrino flux measurements
 - o use signatures

The n index quantifies the diminishing gain in increasing exposure when limited by neutrinos:

reducing the sensitivity by a factor of 10 requires increasing the exposure by at least 10ⁿ

DAMA MODULATION SIGNAL

- Standard Halo Model predicted modulation A~0.02-0.1, t₀=152.5 days
- DAMA/Nal + DAMA/LIBRA-phase1 + phase2:
 - 2.86 t × yr (2 6 keV)
 - $A = (0.00996 \pm 0.00074) \text{ cpd/kg/keV} \chi^2/\text{dof} = 130/155$

No signal from other direct detection experiments

ANAIS-112 (LSC) & COSINE-100 (Y2L) offer direct test, no clear observation of modulation

DAMA/LIBRA-phase2-empowered running with lower software energy threshold of 0.5 keV

MODULATION PERSPECTIVE (@LNGS)

SABRE

- Development of ultra-high purity Nal(Tl) crystals (3-5 kg, 0.1-0.3 dru in the ROI)
 - PoP at LNGS exploited successfully ⁴⁰K tagging with sensitivity at the level of 1ppb
- Two sites: LNGS in Northern and SUPL in Southern hemisphere
 - Passive shielding (North) + active veto (South)

COSINUS

- Nal detectors operated as cryogenic calorimeters
- dual readout of heat and scintillation light
- construction phase, several prototypes, mass
 60g → 110g
- COSINUS-1n: Ø(100 kg days) to know whether DAMA sees a nuclear recoil signal or not (low threshold essential)

exposure of 100 kg days

WIMP NUCLEON SD INTERACTION EXCLUSION LIMITS LANSCAPE

- Spin-dependent phase space is wideopen at lower masses but technology to probe deep at 10 – 100 GeV/c² is well-developed
 - PICO superheated bubble chambers Freon (C₃F₈) probe proton coupling
 - LXe TPC detectors cover ncoupling, but the xenon neutrino fog is decades higher than the fluorine neutrino fog
 - EDELWEISS, SuperCDMS ncoupling at lower masses CRESST is exploring new SD crystals with Lithium
 - New technology could be a liquid/ solid phase change detector like supercooled H₂O

WIMP-NUCLEON SCATTERING IN NREFT

- More general description by nonrelativistic effective field theory
- expansion parameters: $v/c \simeq 10^{-3}$ and $|\vec{q}|/m_M$
- $|\vec{q}| \simeq O(10 100 \text{ MeV})$ is the momentum exchange
- *m_M* is some large scale involved (DM mass, nucleus mass, or a heavy mediator mass)

relativistic interactions constructed as bilinear products of the available scalar and four-vector amplitudes (20 effective Lagrangians)

j	$\mathcal{L}^{j}_{\mathrm{int}}$	Nonrelativistic reduction	$\sum_i c_i \mathcal{O}_i$	P/T
1	χχNN	$1_{\chi}1_N$	\mathcal{O}_1	E/E
2	$i \bar{\chi} \chi \bar{N} \gamma^5 N$	$i \frac{\vec{q}}{m_N} \cdot \vec{S}_N$	\mathcal{O}_{10}	0/0
3	$i \bar{\chi} \gamma^5 \chi \bar{N} N$	$-i\frac{\vec{q}}{m_{\chi}}\cdot\vec{S}_{\chi}$	$-\frac{m_N}{m_\chi}\mathcal{O}_{11}$	O/O
4	$\bar{\chi}\gamma^5\chi\bar{N}\gamma^5N$	$-rac{ec{q}}{m_{\chi}}\cdotec{S}_{\chi}rac{ec{q}}{m_{N}}\cdotec{S}_{N}$	$-\frac{m_N}{m_\chi}\mathcal{O}_6$	E/E
5	$ar{\chi} \gamma^{\mu} \chi ar{N} \gamma_{\mu} N$	$1_{\chi}1_N$	$\hat{\mathcal{O}}_1$	E/E
6	$\bar{\chi}\gamma^{\mu}\chi\bar{N}i\sigma_{\mulpha}rac{q^{lpha}}{m_{ m M}}N$	$\frac{\vec{q}^{2}}{2m_N m_{\rm M}} 1_{\chi} 1_N + 2 \big(\frac{\vec{q}}{m_{\chi}} \times \vec{S}_{\chi} + i \vec{v}^{\perp} \big) \cdot \big(\frac{\vec{q}}{m_{\rm M}} \times \vec{S}_N \big)$	$\frac{\dot{q}^2}{2m_N m_{\rm M}} \mathcal{O}_1 - 2\frac{m_N}{m_{\rm M}} \mathcal{O}_3 + 2\frac{m_N^2}{m_{\rm M} m_{\chi}} \left(\frac{q^2}{m_N^2} \mathcal{O}_4 - \mathcal{O}_6\right)$	E/E
7	$\bar{\chi}\gamma^{\mu}\chi\bar{N}\gamma_{\mu}\gamma^{5}N$	$-2\vec{S}_N\cdot\vec{v}^{\perp}+\frac{2}{m_\chi}i\vec{S}_{\chi}\cdot(\vec{S}_N\times\vec{q})$	$-2\mathcal{O}_7+2\frac{m_N}{m_\chi}\mathcal{O}_9$	O/E
8	$i\bar{\chi}\gamma^{\mu}\chi\bar{N}i\sigma_{\mulpha}rac{q^{lpha}}{m_{M}}\gamma^{5}N$	$2i \frac{\vec{q}}{m_{\rm M}} \cdot \vec{S}_N$	$2\frac{m_N}{m_M}\mathcal{O}_{10}$	0/0
9	$\bar{\chi}i\sigma^{\mu u}rac{q_{ u}}{m_{ m M}}\chiar{N}\gamma_{\mu}N$	$-\frac{\vec{q}^{2}}{2m_{\chi}m_{\rm M}}1_{\chi}1_{N}-2\big(\frac{\vec{q}}{m_{N}}\times\vec{S}_{N}+i\vec{v}^{\perp}\big)\cdot\big(\frac{\vec{q}}{m_{\rm M}}\times\vec{S}_{\chi}\big)$	$-rac{{{ar q}}^2}{{{2m_\chi m_M }}} {\mathcal O}_1 + rac{{{2m_N }}}{{{m_M }}} {\mathcal O}_5 \ - 2rac{{{m_N }}}{{{m_M }}} \left({rac{{{ar q}}^2}{{m_N }^2}} {\mathcal O}_4 - {\mathcal O}_6 ight)$	E/E
10	$\bar{\chi}i\sigma^{\mu\nu}rac{q_{\nu}}{m_{\rm M}}\chi\bar{N}i\sigma_{\mu\alpha}rac{q^{lpha}}{m_{\rm M}}N$	$4\left(\frac{\vec{q}}{m_{\rm M}}\times\vec{S}_{\chi}\right)\cdot\left(\frac{\vec{q}}{m_{\rm M}}\times\vec{S}_{N}\right)$	$4\left(\frac{\bar{q}^2}{m_{\rm M}^2}\mathcal{O}_4-\frac{m_N^2}{m_{\rm M}^2}\mathcal{O}_6\right)$	E/E
11	$\bar{\chi}i\sigma^{\mu\nu}rac{q_{\nu}}{m_{\rm M}}\chi\bar{N}\gamma^{\mu}\gamma^{5}N$	$4i\left(rac{ec{q}}{m_{\mathrm{M}}} imesec{S}_{\chi} ight)\cdotec{S}_{N}$	$4\frac{m_N}{m_M}\mathcal{O}_9$	O/E
12	$i\bar{\chi}i\sigma^{\mu\nu}rac{q_{\nu}}{m_{\rm M}}\chi\bar{N}i\sigma_{\mu\alpha}rac{q^{lpha}}{m_{M}}\gamma^{5}N$	$-\left[i\frac{\vec{q}^{2}}{m_{\chi}m_{\rm M}}-4\vec{v}^{\perp}\cdot\left(\frac{\vec{q}}{m_{\rm M}}\times\vec{S}_{\chi}\right)\right]\frac{\vec{q}}{m_{\rm M}}\cdot\vec{S}_{N}$	$-\frac{m_N}{m_\chi}\frac{\bar{q}^2}{m_{\rm M}^2}\mathcal{O}_{10}-4\frac{\bar{q}^2}{m_{\rm M}^2}\mathcal{O}_{12}-4\frac{m_N^2}{m_{\rm M}^2}\mathcal{O}_{15}$	0/0
13	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}\gamma_{\mu}N$	$2\vec{v}^{\perp}\cdot\vec{S}_{\chi}+2i\vec{S}_{\chi}\cdot\left(\vec{S}_{N}\times\frac{\vec{q}}{m_{N}}\right)$	$2\mathcal{O}_8 + 2\mathcal{O}_9$	O/E
14	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}i\sigma_{\mulpha}rac{q^{lpha}}{m_{ m M}}N$	$4i\vec{S}_{\chi}\cdot\left(rac{\vec{a}}{m_{\rm M}}\times\vec{S}_{N} ight)$	$-4 \frac{m_N}{m_M} \mathcal{O}_9$	O/E
15	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}\gamma^{\mu}\gamma^{5}N$	$-4\vec{s}_{x}\cdot\vec{s}_{N}$	$-4\mathcal{O}_4$	E/E
16	$i\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}i\sigma_{\mulpha}rac{q^{lpha}}{m_{ m M}}\gamma^{5}N$	$4i\vec{v}^{\perp}\cdot\vec{S}_{\chi}rac{\vec{q}}{m_{\rm M}}\cdot\vec{S}_N$	$4 \frac{m_N}{m_M} \mathcal{O}_{13}$	E/O
17	$i\bar{\chi}i\sigma^{\mu\nu}rac{q_{ u}}{m_{ m M}}\gamma^5\chi\bar{N}\gamma_{\mu}N$	$2i\frac{\vec{q}}{m_{\rm M}}\cdot\vec{S}_{\chi}$	$2\frac{m_N}{m_M}\mathcal{O}_{11}$	0/0
18	$i\bar{\chi}i\sigma^{\mu\nu}rac{q_{\nu}}{m_{\rm M}}\gamma^5\chi\bar{N}i\sigma_{\mulpha}rac{q^{lpha}}{m_{\rm M}}N$	$\frac{\vec{q}}{m_{\rm M}} \cdot \vec{S}_{\chi} \left[i \frac{\vec{q}^2}{m_N m_{\rm M}} - 4 \vec{v}^{\perp} \cdot \left(\frac{\vec{q}}{m_{\rm M}} \times \vec{S}_N \right) \right]$	$\frac{\vec{q}^{2}}{m_{\rm M}^2}\mathcal{O}_{11} + 4\frac{m_N^2}{m_{\rm M}^2}\mathcal{O}_{15}$	0/0
19	$i\bar{\chi}i\sigma^{\mu\nu}rac{q_{\nu}}{m_{\rm M}}\gamma^5\chi\bar{N}\gamma_{\mu}\gamma^5N$	$-4i\frac{\vec{q}}{m_{\rm M}}\cdot\vec{S}_{\chi}\vec{v}_{\perp}\cdot\vec{S}_{N}$	$-4\frac{m_N}{m_M}\mathcal{O}_{14}$	E/O
20	$i\bar{\chi}i\sigma^{\mu\nu}rac{q_{\nu}}{m_{\rm M}}\gamma^5\chi\bar{N}i\sigma_{\mulpha}rac{q^{lpha}}{m_{\rm M}}\gamma^5N$	$4\frac{\vec{q}}{m_{\rm M}}\cdot\vec{S}_{\chi}\frac{\vec{q}}{m_{\rm M}}\cdot\vec{S}_{N}$	$4rac{m_N^2}{m_{ m M}^2}\mathcal{O}_6$	E/E