Ricerca di X17 a

E. Di Meco^{1,2} per la collaborazione PADME

Laboratori Nazionali di Frascati, 00044 Frascati (RM), Italia ² Dipartimento di Fisica, Università di Roma "Tor Vergata" I-00133 Roma, Italia

L'ANOMALIA DI X₁₇

- I recenti risultati della collaborazione ATOMKI hanno mostrato degli eccessi anomali nelle misure dell'IPC per ⁴He, ⁸Be, ¹²C
- Anomalia trovata ad angoli diversi corrispondenti all'energia di transizione
- Compatibile in tutti i casi con nuova particella protofobica di massa 17 MeV, X₁₇
- PADME ha la possibilità di esplorare lo spazio dei

Phys.Rev.Lett. 116 (2016) 4, 042501

L'ESPERIMENTO PADME

$X_{17} \rightarrow PRESA DATI DEDICATA: RUN III$

- Avendo a disposizione fasci di positroni al di sotto di 500 MeV PADME può sfruttare la produzione risonante di X₁₇. Per fare ciò il \sqrt{s} deve essere molto prossimo alla massa attesa \rightarrow è necessaria una procedura di scanning fine:

 Θ (degrees)

STRATEGIE DI ANALISI E STIME TEORICHE DEI LIMITI ATTESI

BIBLIOGRAFIA

Con la statistica raccolta ci aspettiamo di porre i seguenti limiti sia per il modello vettoriale che pseudoscalare (accoppiamento leptonico). Gli osservabili che studieremo saranno:

• Phys.Lett.B 663 (2008) 209-213

E_{clus} [MeV]

- Phys.Rev.Lett. 116 (2016) 4, 04250
- Phys.Lett.B 663 (2008) 209-213
- Darmé et al. Phys. Rev. D 106, 115036
- <u>D. Banerjee et al. Phys. Rev.</u> D 101, 071101(R)

 $\Delta t_{clus}[ns]$

IFAE 2023 - Incontri di Fisica delle Alte Energie 12 – 14 Aprile 2023, Catania