ITS3: un innovativo tracciatore di silicio ultrasottile e flessibile per l'Esperimento ALICE

L'Esperimento ALICE a LHC

 B_0

 D^0

 K^{-}

 π'

3/21

• Tracciamento delle particelle cariche

secondari di decadimento

vertice primario e dei vertici

fino a bassi valori di impulso (~50 MeV/c)

Ricostruzione e discriminazione del

Caratteristiche dell'ITS2:

Funzioni dell'ITS:

- 7 strati basati su Sensori a Pixel Monolitici Attivi (MAPS)
- 10 m² di area attiva 147 cm
- **12.5** Gpixel

ALICE

Raggio più interno 22.4 mm

4 strati esterni

40 cm

La tecnologia MAPS

ITS2, **24mila** Sensori in silicio a Pixel Monolitici Attivi (MAPS), gli ALPIDE:

- area di 3.0 × 1.5 cm²
- matrice di 500mila pixel

L'ITS2 durante la fase di installazione

La tecnologia MAPS

ITS2: **24mila** Sensori in silicio a Pixel Monolitici Attivi (MAPS)

Circuiteria di lettura: 11 μm

> Strato attivo: 15 μm Substrato:

> > 24 µm

Rappresentazione pittorica di 4 pixel MAPS

- Logica di lettura e volume sensibile in un **unico cristallo** di silicio
- Circuiteria CMOS completa all'interno del pixel
- Spessore ridotto (30-50 μm)

L'ITS2 durante la fase di installazione

L'aggiornamento da ITS2 a ITS3

Modello dell'ITS3

Strati interni dell'ITS2

L'aggiornamento da ITS2 a ITS3

Strati interni dell'ITS2

Modello dell'ITS3

Metà sezione dei tre strati interni del modello di ITS3

Caratteristiche dell'ITS3:

• Eliminazione della struttura segmentata facendo uso di sensori flessibili e di grande area

2026

~28 cm

• Riduzione dello spessore massico introdotto (0.3% \rightarrow 0.05% X₀/strato) e della distanza dal punto di interazione (24 \rightarrow 18 mm)

9/21

ITS3: un innovativo rivelatore di vertice

<u>I sensori MAPS per l'ITS3</u>:

- Grande area (fino a $28.0 \times 9.4 \text{ cm}^2$)
- Curvati (raggio min. 18 mm, ITS2: 22.4 mm)
- Ultra-sottili (20-40 μm, ITS2: 50 μm)

Miglioramenti delle prestazioni:

- Efficienza di tracciamento
- Risoluzione di traccia (fattore 2×)

Importanti ricadute sul programma di fisica di ALICE, basato su:

- Tracciamento fino a bassi valori di impulso
- Ricostruzione dei vertici secondari

10/21

ITS3: un innovativo rivelatore di vertice

<u>l sensori MAPS per l'ITS3</u>:

- Grande area (fino a 28.0 × 9.4 cm²)
- Curvati (raggio min. 18 mm, ITS2: 22.4 mm)
- Ultra-sottili (20-40 μm, ITS2: 50 μm)

Miglioramenti delle prestazioni:

- Efficienza di tracciamento
- Risoluzione di traccia (fattore 2×)

Importanti ricadute sul programma di fisica di ALICE, basato su:

- Tracciamento fino a bassi valori di impulso
- Ricostruzione dei vertici secondari

ALICE

Nuove sfide tecnologiche per l'ITS3

- Processo CMOS a 65 nm: realizzate diverse strutture di test per validarne le funzionalità
- **Stitching,** ossia ripetizione e concatenamento dell'unità funzionale del sensore: primi sensori stitched in produzione

Caratterizzazione delle strutture di test

Strutture di test realizzate per validare il processo CMOS a 65 nm

ALICE

Caratteristiche:

- Matrice di 0.5 × 0.5 mm²
- 32 × 32 pixel
- Spessore di 50 μm
- Impianto aggiuntivo di tipo $n \rightarrow$ ulletsvuotamento completo, raccolta della carica più veloce, uniforme e efficiente

"Digital Pixel Test Structures implemented in a 65 nm CMOS process" [doi:10.48550/arXiv.2212.08621]

Il segnale di output dei DPTS

Due segnali in uscita con polarità opposta:

• Coordinate del pixel codificate negli intervalli di tempo tra incroci

Il segnale di output dei DPTS

Due segnali in uscita con polarità opposta:

Il segnale di output dei DPTS

Due segnali in uscita con polarità opposta:

- Coordinate del pixel codificate negli intervalli di tempo tra incroci
- Misura del tempo sopra soglia del segnale analogico → quantità correlata all'ampiezza del segnale analogico

ALICE

• Risoluzione dello spettro di ⁵⁵Fe anche in seguito a irraggiamento

Risposta a sorgenti in laboratorio: ⁵⁵Fe

17/21

Curvatura dei sensori MAPS

- <u>2021</u>: "First demonstration of in-beam performance of bent Monolithic Active Pixel Sensors" [doi:10.1016/j.nima.2021.166280]
- <u>2022-2023</u>: Sviluppo di prototipo per meccaniche e interconnessioni di un singolo strato curvato
- <u>2023</u>: Curvatura e caratterizzazione delle strutture di test CMOS 65 nm curvate

- Per il 2026 sarà installato un **innovativo tracciatore di vertice** per l'esperimento ALICE. Sarà composto da **sensori MAPS** di grande area, flessibili e curvati
- Le attività per la realizzazione dell'ITS3 procedono secondo il programma:
 - Il processo CMOS a 65 nm è stato validato
 - La resistenza alle radiazioni sia TID (fino a 100 kGy) che NIEL (fino a 10¹⁴ 1 MeV n_{eq} cm⁻²) è stata verificata per le prime strutture di test
 - È stata ottenuta una **risposta eccellente** in termini di risoluzione dello **spettro energetico** da sorgente radioattiva e di **efficienza di rivelazione**
 - I test fatti finora sui sensori curvati hanno dato risultati promettenti
- La tecnologia **ITS3** costituirà il **punto di partenza** per lo sviluppo del tracciatore del futuro esperimento **ALICE 3**, proposto per i run 5 e 6 di LHC

S. Strazzi, Studio di rivelatori al silicio avanzati per l'esperimento ALICE 3 nel Run 5 e 6 di LHC, IFAE 2023

Backup

Mesone D

Efficienza di tracciamento

