

IFAE 2023

Incontri di Fisica delle Alte Energie

> Catania 13/04/2023

Studio di **rivelatori al silicio avanzati** per l'esperimento **ALICE 3** nel Run 5 e 6 di LHC

Sofia Strazzi

Università e INFN, Bologna

L'esperimento ALICE ha raggiunto in questi anni un ambizioso programma nel campo della caratterizzazione del Quark Gluon Plasma e molti progressi sono previsti per i Run 3 e 4.

Il detector concept attuale lascerà però diverse domande fondamentali aperte

Mùon absorber

2029

2030

a next generation

2031

LHC Run 4

heavy-ion experiment

Muon

ALICE 3

2028

https://arxiv.org/abs/2211.02491

- Meccanismi di adronizzazione e termalizzazione di quark pesanti
- Precisa descrizione microscopica delle interazioni dei quark heavy-flavour
- Produzione di barioni multi-charmati
- ρ-a₁ mixing

Nuovo apparato sperimentale realizzato interamente da tecnologie al silicio di ultima generazione

Ricco programma e nuove opportunità di studio

Sofia Strazzi

 ◆ Rivelazone di adroni multi-charm a basso impulso → test critico per modelli di coalescenza

Radiazione EM prodotta dal QGP nelle
 prime fasi di evoluzione

2

2025

Superconducting

magnet system

RICH

2026

2027

LHC LS3

L'esperimento ALICE ha raggiunto in questi anni un ambizioso programma nel campo della caratterizzazione lolti progressi sono previsti per i Run 3 e 4.

Esempi di nuove opportunità di studio

Tutti gli **stati** qua riportati sono **potenzialmente misurabili da ALICE3**

Statistical-thermal model predictions

Test cruciali riguardo alla ristorazione della simmetria chirale

Thermal dilepton mass spectra for three different scenarios

2025

ll d

div

https:/

Superconductir

magnet syst

Esperimento compatto, totalmente basato su rivelatori al silicio innovativi e progettato per raccogliere luminosità elevate ($L_{PbPb} \sim 1.2 \times 10^{28} \text{ cm}^{-2} \text{s}^{-1}$)

Esperimento compatto, totalmente basato su rivelatori al silicio innovativi e progettato per raccogliere luminosità elevate ($L_{PbPb} \sim 1.2 \times 10^{28} \text{ cm}^{-2} \text{s}^{-1}$)

Identification:

- Identificazione delle particelle in ۰ un range di p_{T} molto vasto
 - > adroni fino a 2-3 GeV/c
 - > elettroni tra 0.05 < p_T < 2 GeV/c
 - > fotoni fino a bassissimi p_T (≥1 MeV/c)

Sofia Strazzi

IFAE 2023

2025

FC'

2026

ALI

2027

LHC LS3

Esperimento compatto, totalmente basato su riveletori el cilicio innovativi o progettato per raccogliere luminosità elev

LOW GAIN AVALANCHE DETECTOR (LGAD)

Basato su un meccanismo di moltiplicazione a basso guadagno (10-70)

Rapporto tra segnale e rumore – più alto

Risoluzione temp. eccellente

Sensore allo stato dell'arte (50 μ m) $\rightarrow \sim$ **30 ps**

Già utilizzati nei principali esperimenti di LHC e previsti per diversi upgrades a HL-LHC (ATLAS & CMS)

SETUP AL BEAM TEST

BEAM TEST OF NOVEMBER 2021

I primi LGAD sottili di spessore 25 e 35 μm prodotti da FBK sono stati **testati per la prima volta** con un fascio di Pioni di 12 GeV/c

LGAD standard (50 µm) in linea con le aspettative
 ➢ Validazione del setup e della procedura di analisi

IFAE 2023

Sofia Strazzi

11

NUOVO CONCETTO: DOPPIO-LGAD

25+25 μm

Due LGAD uniformi attaccati sui due lati della scheda ed entrambi connessi allo stesso amplificatore

(unico canale di front-end e readout)

Segnale più alto

- → Elettronica di front-end meno power-consuming
- → Elettronica simile a quella utilizzata per gli LGAD standard (50 µm)

Risoluzione temporale migliore

DISTRIBUZIONI DI CARICA

MPV della carica doppio per il doppio-LGAD, come aspettato → Vantaggio per l'elettronica

Risoluzioni temporali: Singolo VS doppio-LGAD 50 µm

Nuovi risultati

- Risultati uniformi per i sensori singoli con spessore standard di 50 μ m •
- Risoluzioni temporali migliori per il doppio-LGAD rispetto al singolo (~23%) •

Risoluzioni temporali: Singolo VS doppio-LGAD 25-35µm

- LGAD singoli: risoluzione temporale comparabile a parità di gain
- **Risoluzioni temporali migliori per il doppio-LGAD** rispetto al singolo (~15 & 24%)

Nuovi risultati

I risultati mostrano che con LGAD sottili (25, 35 μm) e con il concetto di doppio-LGAD si raggiungono risoluzioni molto vicine alla richiesta di 20 ps

FUTURE PLANS: Beam Test in Luglio

LGAD più sottili (10-15 µm)

Singoli e doppi

Test di caratterizzazione in laboratorio già iniziati

CMOS LGADs

BACKUP SLIDES BACKUP SLIDES

TESTED LGADs & ELECTRONICS

First very thin LGAD prototypes produced by FBK

25 μm and **35 μm** -thick FBK single channel

Area = 1x1 mm²

SantaCruz single-channel LGAD read-out board *V1.4 SCIPP 08/18 (*G_{amplifier} ~ **6**)

+ Second stage external amplifier $(G_{amplifier} \sim 11-14)$

Standard sensors produced by HPK

50 µm -thick HPK single channel (W42 & W36 with different doping concentrations)

Area = **1.3x1.3 mm**²

Configuration example

All the runs were repeated with both the single sensors of each couple using the same electronics

DATA ANALYSIS DATA ANALYSIS

- Same trend
- The 'double LGAD' shows a slightly better till

Noise RMS & S/N

CHARGE DISTRIBUTIONS

Charge MPV increases

TIMING PERFORMANCES

Trend and values of 50 µm LGAD totally in agreement with previous results

Trend and values of 50 µm LGAD totally in agreement with previous results

DATA ANALYSIS FOR THE TIMING PERFORMANCE

ALICE 3 EXPERIMENT

TOF SPECIFICATIONS

	Inner TOF	Outer TOF	Forward TOF	
Radius (m)	0.19	0.85	0.15–1.5	
z range (m)	-0.62-0.62	-2.79-2.79	4.05	
Surface (m ²)	1.5	30	14	
Granularity (mm ²)	1×1	5×5	1×1 to 5×5	
Hit rate (kHz/cm ²)	74	4	122	
NIEL (1 MeV n_{eq}/cm^2) / month	$1.3\cdot10^{11}$	$6.2 \cdot 10^{9}$	$2.1 \cdot 10^{11}$	
TID (rad) / month	$4 \cdot 10^3$	$2 \cdot 10^{2}$	$6.6 \cdot 10^{3}$	
Material budget ($\% X_0$)	1–3	1–3	1–3	
Power density (mW/cm ²)	50	50	50	
Time resolution (ps)	20	20	20	

TOF SEPARATION

Figure 19: Analytical calculations of the $\eta - p_T$ regions in which particles can be separated by at least 3σ for the ALICE 3 particle-identification subsystems embedded in a 0.5 T magnetic field. Electron/pion, pion/kaon and kaon/proton separation plots are shown from left to right.

ALICE 3 key physics objects

Observables	Kinematic range
Heavy-flavour hadrons	$p_{ m T} ightarrow 0, \ oldsymbol{\eta} < 4$
Dielectrons	$p_{\rm T} \approx 0.05$ to 3 GeV/c, $M_{\rm ee} \approx 0.05$ to 4 GeV/c ²
Photons	$p_{ m T} pprox 0.1$ to 50 GeV/c, $-2 < \eta < 4$
Quarkonia and exotica	$p_{ m T} ightarrow 0, \ oldsymbol{\eta} < 1.75$
Ultrasoft photons	$p_{ m T} \approx 1$ to 50 MeV/c, 3 < η < 5
Nuclei	$egin{aligned} p_{\mathrm{T}} & ightarrow 0, \ oldsymbol{\eta} &< 4 \end{aligned}$

Quantity	pp	0–0	Ar–Ar	Ca–Ca	Kr–Kr	In–In	Xe–Xe	Pb–Pb		
$\sqrt{s_{\rm NN}}$ (TeV)	14.00	7.00	6.30	7.00	6.46	5.97	5.86	5.52		
$L_{\rm AA}~({\rm cm}^{-2}{\rm s}^{-1})$	3.0×10^{32}	1.5×10^{30}	3.2×10^{29}	$2.8 imes 10^{29}$	8.5×10^{28}	$5.0 imes10^{28}$	$3.3 imes10^{28}$	$1.2 imes 10^{28}$		
$\langle L_{\rm AA} \rangle ~({\rm cm}^{-2}{\rm s}^{-1})$	3.0×10^{32}	9.5×10^{29}	$2.0 imes 10^{29}$	1.9×10^{29}	$5.0 imes10^{28}$	$2.3 imes 10^{28}$	$1.6 imes 10^{28}$	$3.3 imes 10^{27}$		
$\mathscr{L}_{AA}^{month} (nb^{-1})$	$5.1 imes 10^5$	$1.6 imes 10^3$	$3.4 imes 10^2$	$3.1 imes 10^2$	$8.4 imes 10^1$	$3.9 imes 10^1$	$2.6 imes 10^1$	5.6		
$\mathscr{L}_{\mathrm{NN}}^{\mathrm{month}} \left(\mathrm{pb}^{-1} \right)$	505	409	550	500	510	512	434	242		
$R_{\rm max}(\rm kHz)$	24 000	2169	821	734	344	260	187	93		
μ	1.2	0.21	0.08	0.07	0.03	0.03	0.02	0.01		
$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ (MB)	7	70	151	152	275	400	434	682		
	at $R = 0.5 \text{cm}$									
$R_{\rm hit}~({\rm MHz/cm^2})$	94	85	69	62	53	58	46	35		
NIEL (1 MeV n_{eq}/cm^2)	$1.8 imes 10^{14}$	$1.0 imes 10^{14}$	8.6×10^{13}	$7.9 imes 10^{13}$	$6.0 imes 10^{13}$	$3.3 imes10^{13}$	$4.1 imes 10^{13}$	$1.9 imes 10^{13}$		
TID (Rad)	$5.8 imes10^6$	$3.2 imes 10^6$	$2.8 imes 10^6$	$2.5 imes 10^6$	$1.9 imes 10^6$	$1.1 imes 10^6$	$1.3 imes 10^6$	$6.1 imes 10^5$		
	at $R = 100 \mathrm{cm}$									
$R_{\rm hit}~({\rm kHz/cm^2})$	2.4	2.1	1.7	1.6	1.3	1.0	1.1	0.9		
NIEL (1 MeV n_{eq}/cm^2)	$4.9 imes 10^9$	$2.5 imes 10^9$	$2.1 imes 10^9$	$2.0 imes 10^9$	$1.5 imes 10^9$	$8.3 imes 10^8$	$1.0 imes 10^9$	$4.7 imes 10^8$		
TID (Rad)	$1.4 imes 10^2$	$8.0 imes 10^1$	$6.9 imes 10^1$	$6.3 imes 10^1$	$4.8 imes 10^1$	$2.7 imes 10^1$	$3.3 imes 10^1$	1.5×10^{1}		

IFAE 2023

31

Vertex detector inside the beam pipe and secondary vacuum

