
IFAE
2023
Catania

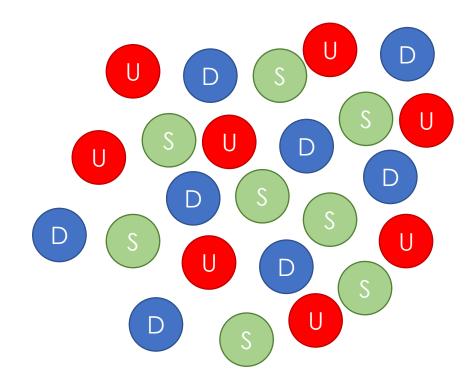


# Strangelets come materia oscura

Impatto sull'evoluzione stellare

#### Materia Oscura






Gianfranco Bertone, Tim, M.P. Tait, Nature 562 (2018) 7725, 51-56

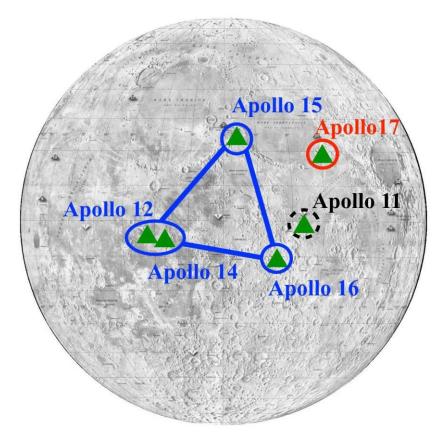
## Ipotesi di Bodmer-Witten

- Materia "in bulk" uds è proposta come stato fondamentale della materia
- Energia per barione minore di quella del ferro (~930 MeV/fm³)
- Apre alla possibilità dell'esistenza delle stelle strane (e conseguenti scenari astrofisici) e della materia strana come materia oscura (Witten (1984))

Difficilmente la materia *adronica* decade in *materia strana* poiché servirebbe un grande contenuto di stranezza — può avvenire nelle stelle di neutroni con core con iperoni.

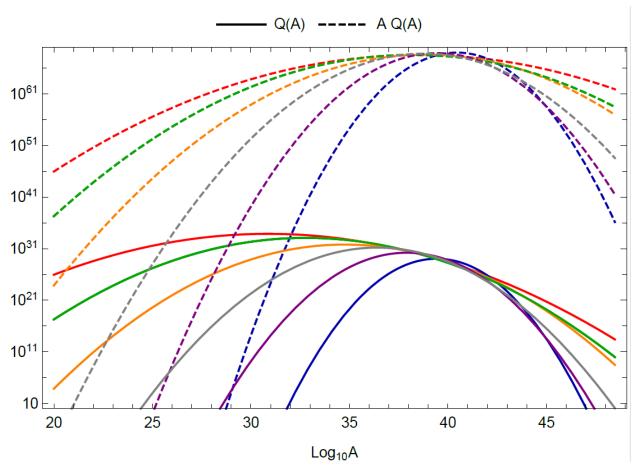


# Formazione degli strangelets cosmologici


- Materia in bulk **uds** si forma a 150 MeV (~10<sup>-6</sup> s dopo il Big Bang)
- A causa della temperatura elevata la superficie degli strangelets evapora in adroni (Madsen et al. (1986), Farhi and Alcock (1985)) fino a una temperatura di circa 10 MeV
- Gli strangelets hanno un rapporto massa/superficie molto elevato rispetto alla materia ordinaria
- È possible regolare due parametri della distribuzione preevaporazione e un parametro fenomenologico nell'equazione che regola l'evaporazione

$$rac{dA}{dT_U} = rac{2 \, \mathrm{k} \, A(T_U)^{2/3} \, eta ig( T_U^4 p(T_U, A(T_U)) - \mathrm{T}_s(T_U, A(T_U))^4 p(T_s(T_U, A(T_U)), A(T_U)) ig)}{T_U^3 (2 \mathrm{T}_s(T_U, A(T_U)) + \mathrm{I})}$$

# Limiti osservativi e spazio dei parametri


La distribuzione finale deve rispettare dei limiti abbastanza stringenti:

- Conversione proto-NS in SQS (Bucciantini et al. (2022))
- Femtolensing e supernovae (Sidhu and Starkman (2020), Burdin et al. (2015))
- Limiti sismografi lunari sul flusso, stringenti su strangelets di massa piccola (Burdin et al. (2015))



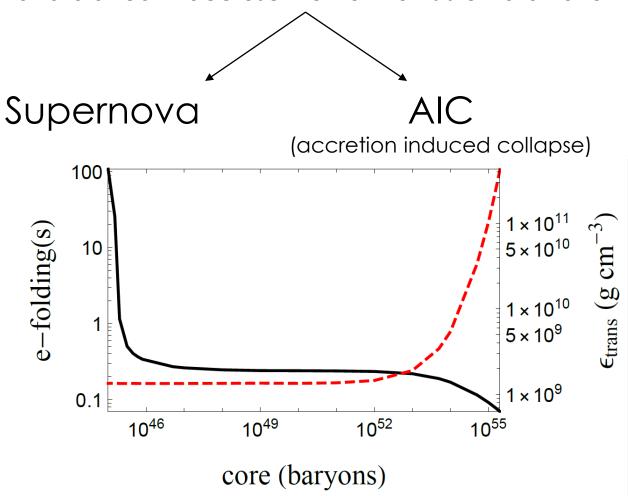
Nunn et al. Space Science Reviews volume 216, 89 (2020)

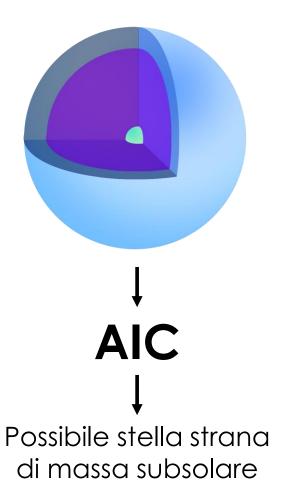
# Caratteristiche strangelets



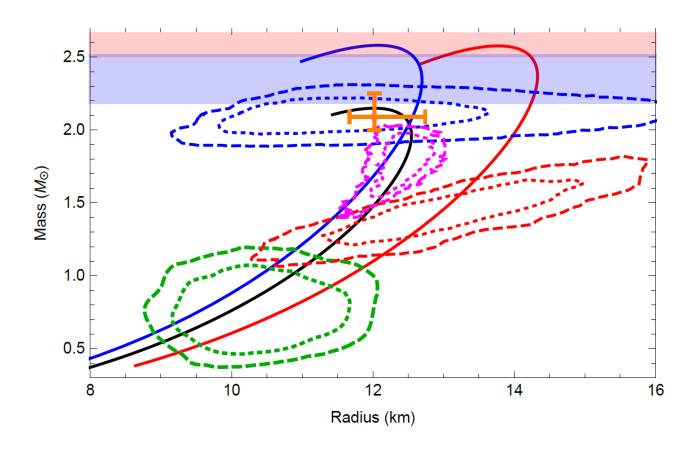
Queste possibili distribuzioni in dimensione Q(A) e in massa A Q(A) sono normalizzate alle stime di massa della materia nella Via Lattea.

### Impatto sull'evoluzione stellare


Oggetti stellari possono acquisire nel corso della loro vita degli strangelets a due condizioni (Madsen (1986)):


- Devono essere costituiti da una porzione di materia abbastanza densa da poter fermare uno strangelet
- La porzione densa deve "vivere" abbastanza a lungo così da aumentare l'esposizione a questi oggetti

Condizione bonus: **posizione nella galassia**. La probabilità di cattura dipende dal flusso locale della materia oscura (e gli strangelet sono molto densi).


#### Da Nane Bianche a Nane Strane

Nana bianca in accrescimento in un sistema binario





### Hess J1731-347



Le nane strane non rappresentano l'unica strada per produrre oggetti compatti di massa subsolare.

È possible generare una stella di neutroni di massa bassa ma non subsolare mediante **electroncapture** supernova.

Se il nucleo della stella progenitrice, una volta abbastanza denso e nel periodo precedente la supernova, dovesse catturare uno strangelet, si potrebbe formare una **stella strana di massa subsolare.** 

#### Conclusioni

- È uno scenario di materia oscura composta da **macros** potenzialmente testabile
- Esistono **osservabili** astrofisici collegabili con gli strangelets: oggetti compatti di massa subsolare, eccesso di raggi gamma dal centro galattico ed anche flares solari (*Bertolucci, S. et al.* (2016))
- Difficilmente interagiscono con la Terra

| object mass (g) | Eros       | Moon               | Earth             | Jupiter           | Sun               |
|-----------------|------------|--------------------|-------------------|-------------------|-------------------|
| 1               | $10^{4}$   | $3 \cdot 10^{8}$   | $4 \cdot 10^9$    | $4 \cdot 10^{11}$ | $5 \cdot 10^{13}$ |
| $10^{3}$        | 10         | $3 \cdot 10^5$     | $4 \cdot 10^{6}$  | $4 \cdot 10^{8}$  | $5 \cdot 10^{10}$ |
| $10^{6}$        | $10^{-2}$  | $3 \cdot 10^2$     | $4 \cdot 10^{3}$  | $4 \cdot 10^{5}$  | $5 \cdot 10^{7}$  |
| $10^9$          | $10^{-5}$  | 0.3                | 4                 | $4 \cdot 10^{2}$  | $5 \cdot 10^4$    |
| $10^{12}$       | $10^{-8}$  | $3 \cdot 10^{-4}$  | $4 \cdot 10^{-3}$ | 0.4               | 50                |
| $10^{15}$       | $10^{-11}$ | $3 \cdot 10^{-7}$  | $4 \cdot 10^{-6}$ | $4 \cdot 10^{-4}$ | $5 \cdot 10^{-2}$ |
| $10^{18}$       | $10^{-14}$ | $3 \cdot 10^{-10}$ | $4 \cdot 10^{-9}$ | $4 \cdot 10^{-7}$ | $5 \cdot 10^{-5}$ |