

La fisica delle astroparticelle nell'ambito dell'Osservatorio Pierre Auger : principali risultati e prospettive future

Gioacchino Alex Anastasi on behalf of the Pierre Auger Collaboration

Incontri di Fisica delle Alte Energie Catania, 12 Aprile 2023

L'Osservatorio Pierre Auger

Rivelatore di superficie (SD) Griglia triangolare di oltre 1600 rivelatori Cherenkov ad acqua (WCD) su un'area di ~3000 km²

Rivelatore di fluorescenza (FD)

24 telescopi di fluorescenza in 4 edifici per osservare l'atmosfera ad elevazioni 0°-30°

Numerosi *enhancements* (Infill, HEAT, AERA, AMIGA, ...)

Osservatorio Pierre Auger

Sciami estesi in aria

Osservatorio Pierre Auger

Rivelazione ibrida

Osservazione di uno sciame contemporaneamente con i rivelatori di superficie e con i telescopi di fluorescenza

> Misura della densità di particelle al suolo *duty-cycle* ~100%

Misura dello sviluppo in atmosfera dello sciame *duty-cycle* ~ 15%

Calibrazione in energia

Golden Hybrids : eventi ibridi nei quali è possibile ricostruire sia l'energia del primario con le misure di fluorescenza (E_{FD}) sia la distribuzione laterale (*Lateral Distribution Function*, LDF) con il rivelatore di superficie.

Calibrazione in energia

Spettro energetico

Stessa scala in energia : l'intero apparato è calibrato rispetto al rivelatore di fluorescenza (nessun utilizzo di simulazioni!)

Incertezza complessiva dominata proprio dalla sistematica (14%) sulla scala in energia

Alle più alte energie :

- Caviglia (ankle) ~ 5 EeV
- Flesso (instep) ~ 13 EeV new feature !
- Soppressione sopra ~ 46 EeV

Phys.Rev.D 102, 062005 (2020)

Osservatorio Pierre Auger

sr¹ yr¹

E³ [eV² km⁻²

Composizione in massa

Osservabile correlata alla massa del primario : X_{max} profondità atmosferica del massimo nello sviluppo dello sciame

Risultato : nuclei primari gradualmente più pesanti per E \ge 10^{18.3} eV

Composizione in massa

Misurata tramite tecnica di fluorescenza -> *duty-cycle* solo del ~15% \bigcirc Ricerca di nuove tecniche basate sulle misure del rivelatore di superficie (*duty-cycle* ~100%)

Direzioni di arrivo - anisotropie su larga scala

Il futuro dell'Osservatorio: AugerPrime

Installazione di nuovi apparati nel rivelatore di superficie !

- In ciascun rivelatore Cherenkov ad acqua : Small PMT + Surface Scintillator Detector + Radio Antenna + nuova elettronica (Upgraded Unified Board)
- completamento di una griglia di Underground Muon Detectors su un'area di ~30 km² (distanza reciproca tra stazioni di 750m)

Obiettivo principale: determinazione della composizione in massa alle energie estreme

- origine della soppressione
- anisotropie in funzione della carica
- studio delle interazioni adroniche (energie molto superiori a quelle raggiungibili negli acceleratori)

Auger Preliminary Design Report [arXiv:1604.03637] A. Castellina, EPJ Web of Conf.210 (2019) 06002

Conclusioni

Molti risultati non trattati in questa presentazione, come :

- deficit della componente muonica nei modelli di interazioni adroniche (paper1, paper2, paper3)
- ricerca di <u>fotoni</u> e <u>neutrini</u> alle altissime energie
- · anisotropie rispetto a cataloghi di sorgenti (paper, proceeding)
- <u>elfi</u> e altri fenomeni dell'alta atmosfera

E la storia non finisce qui !

AugerPrime : sensibilità alla composizione in massa per raggi cosmici con E > 4 x 10¹⁹ eV

- ★ Installazione e messa in funzione da completare a metà 2023
- ★ Raccolta dati continua oltre il 2030
- ★ Risultati fondamentali per la nuova generazione di esperimenti

Backup

L'Osservatorio Pierre Auger

00

O

Edificio con 6 telescopi di fluorescenza

0

0

1.5 km

rivelatore Cherenkov ad acqua

IFAE, 12 Aprile 2023

0 0 0000

0

Telescopi di fluorescenza

Osservazioni possibili solo in **notti serene e senza luna** (circa il 15% del tempo)

Osservatorio Pierre Auger

IFAE, 12 Aprile 2023

Aperture with UV filter

Corrector ring-

Rivelazione ibrida - misure di fluorescenza

Osservatorio Pierre Auger

Rivelatore Cherenkov ad acqua

Ciascun rivelatore contiene **12mila litri di acqua ultra-pura** (diametro 3.6m, altezza 1.2m) costantemente osservata da tre tubi fotomoltiplicatori da 9 pollici.

Ciascuna stazione è autonoma,

dotata di un pannello solare e di un'antenna per la trasmissione wireless dei dati.

Osservatorio Pierre Auger

Rivelazione ibrida - misure al suolo

Ricostruzione delle caratteristiche dello sciame

Lo sciame si propaga in atmosfera con un **fronte approssimativamente sferico.**

La densità di particelle secondarie è molto superiore nel *cor*e della cascata, e diminuisce allontanandosi dall'asse dello sciame.

Ciascuna stazione sarà raggiunta in un tempo diverso e da una quantità di particelle più o meno grande

\hat{U}

Con le misure del rivelatore di superficie è possibile ricostruire il **punto di impatto al suolo del core** e quindi la **direzione del primario**

Interpretazioni di spettro e composizione

Fit combinato di spettro e composizione con uno scenario astrofisico semplificato (<u>PoS(ICRC2021)311</u>)

sopra la caviglia : componente extra-galattica emessa dalle sorgenti con composizione dominata da elementi di media massa, un basso *rigidity-cutoff* e un spettro molto *hard* ($\gamma \sim 0$)

sotto la caviglia : seconda componente extra-galattica con uno spettro *soft* e una composizione leggera (accoppiata a una componente Galattica in questo caso) o intermedia.

Risultato non definitivo a causa delle (grosse) sistematiche dovute alle incertezze: (i) nei modelli di interazione adronica; (ii) nelle interazioni dei primari nell'ambiente delle sorgenti; (iii) nella propagazione nello spazio extragalattico.

18.5

19.0

 $\log_{10}(E/eV)$

19.5

cm⁻²⁻

ס(X_{max}

20.0

30

25

20

15

18.0

IFAE, 12 Aprile 2023

20.0

Η

He