

Sulla strada per il Run III di LHC - Le prestazioni della New Small Wheel

Luca Martinelli

IFAE2023 – Incontri di Fisica delle Alte Energie

Intro Feffetti dell'incremento della luminosità istantanea di LHC

> Trigger

Con le vecchie Small Wheel è impossibile distinguere tra i vari casi:

- A. una traccia alto pT proveniente dal punto di interazione;
- B. una traccia a basso pT creata nel toroide;
- C. diffusione multipla.

Tracciamento

Con le vecchie Small Wheel l'efficienza di ricostruzione decresce.

Servono nuovi rivelatori per gestire l'alto flusso!!!

Il Progetto di aggiornamento New Small Wheel (NSW)

- Due tecnologie di rilevamento:
- MicroMegas (principalmente per il tracciamento);
- small strip Thin Gas Chambers (principalmente per il trigger).

16 strati per avere ridondanze e ricostruire anche la seconda coordinate.

16 "petali" (8 piccoli + 8 grandi).

 $\frac{\sigma(p_T)}{p_T} < 15\% \text{ (@ 1 TeV)}$ $\Rightarrow \text{ risoluzione sul singolo punto ~ 100 } \mu\text{m}$ $\Rightarrow \text{ allineamento degli elementi di lettura ~ 100 } \mu\text{m}$

Le due tecnologie della New Small Wheel

Grande contributo INFN per la costruzione (1/4 dei rivelatori MicroMegas), per il trigger e per tutti I servizi.

- Drift Electrode -300 V 5 mm E Field Conversion/Drift Gap **Micromesh** Amplification Gap E Field 128 µm : **Readout Strips** 400 µm **Resistive Strips Readout Pads** Wires
- > Detector a gas, $Ar: CO_2: iC_4H_{10}$ (93:5:2) per le MicroMegas, $CO_2: n$ — pentano (55:45) per le sTGC.
- Risolutione temporale di 20/25 ns per le MicroMegas e ~15 ns per le sTGC.
- > Risoluzione spaziale \sim 100 μ m per piano tracciante.
- Risoluzione di qualche mm sulla seconda coordinata per il puntamento al vertice di interazione.

HC RUN

MicroMegas – Problema di stabilità in alta tensione

Vecchia miscela

 $Ar: CO_2$

- \triangleright Nuova miscela di gas studiata: $Ar: CO_2: iC_4H_{10}$ (93:5:2).
- Migliori prestazioni in termini di alta tensione.
- Stessa efficienza con guadagno inferiore rispetto alla miscela di gas nominale.
- Studi a lungo termine GIF++ (Gamma Ray Facility). Non osservate criticità con luminosità compatibili a 10 anni di HL-LHC.

Verde: ok, tensione nominale Arancio: lievi problemi, tensione abbassata Rosso: gravi problemi, tensione abbassata

Nuova miscela

ε [%]

La New Small Wheel durante l'installazione

7

Il rumore sulle camere

- Le attività di commissioning hanno portato alla scoperta di un aumento del rumore nei settori su ruota (sia sTGC che Micromegas).
- La modifica dello schema di messa a terra e l'aggiunta di una messa a terra sul rilevatore hanno ridotto i livelli di rumore.
- Aggiunta di gabbie di Faraday su alcune schede elettroniche specifiche.
- > Rumore prima e dopo le modifiche sulle camera MicroMegas.

I passi per installare la prima NSW

Luglio 2021 -

finalmente in ATLAS

Luglio 2021 – Inserimento in caverna NSW-A

8

I primi segnali, i primi muoni

Dagli **splash del fascio da LHC** (7 maggio 2022) alle prime **collisioni del Run 3** di ATLAS.

9

Allineamento della New Small Wheel

- Movimenti/deformazioni monitorati dal sistema di allineamento ottico.
- Entrambe le ruote si inclinano verso l'esterno del rivelatore quando il toroide è attivo.
- > In media 1 mm di spostamento, ma fino a 2,7 mm.
- Il campo magnetico è il principale responsabile degli spostamenti lungo l'asse del fascio.
- > Stesso comportamento per la vecchia Small Wheel.
- Miglioramenti sulla conoscenza dell'allineamento utilizzando tracce ricostruite senza campo magnetico.
- La conoscenza dell'allineamento attuale porta contributi dell'ordine dei 200 μm sulla traccia.

Spostamento in Z (x500 -> esagerazione!)

spostamento Z > 0: verde spostamento Z < 0: magenta

Un anno di commissioning dentro ATLAS...

Studio delle prestazioni dei rivelatori della New Small Wheel:

- carica dei cluster;
- dimensioni dei cluster;
- efficienza in funzione della tensione applicate.

...ma finalmente ci siamo, pronti per il 2023!

ALLAS EXPERIMENT SALAS EXPERIMENT SALAS CALON 3

- Efficienza di ricostruzione richiedendo 4/8 MicroMegas o 4/8 sTGC prossima a 1 per più di 1/3 del 2022.
- Risoluzioni ancora non ottimali (allineamenti contribuiscono in maniera importante) ma che permettono di avere 100/150 μm di risoluzione della traccia.

ATLAS NSW Preliminary run 438502

12

La New Small Wheel è stato uno dei più grandi progetti di aggiornamento degli esperimenti ad LHC.

- Più di 10 anni sono stati necessari per portarlo a termine, con diverse problematiche affrontate, tra cui anche il COVID.
- La New Small Wheel è ora in ATLAS!
- Ci sono ancora problemi da risolvere (sia lato rivelatori che lato acquisizione) ma allo stato attuale la New Small Wheel raccoglie dati e viene usata per la ricostruzione dei muoni.

MATERIALE ADDIZIONALE

Il rivelatore ATLAS

Rivelatore costruito per l'identificazione e ricostruzione di più processi:

- misura con precisione di quantità del Modello Standard
- ricerca di nuova fisica oltre il Modello Standard

Lo Spettrometro di ATLAS – Run2

LHC / HL-LHC Plan

00000

LARGE HADRON COL

Trigger con la NSW

Trigger

- Con la vecchia Small Wheel è impossibile distringuere tra i vari casi:
 - A. una traccia alto pT proveniente dal punto di interazione;
 - B. una traccia a basso pT creata nel toroide
 - C. diffusione multipla
- Il trigger di livello 1 nell'End-Cap è dominato da finti muoni.
- Con 3x10³⁴ cm⁻²s⁻¹ per il trigger dei muoni, ci aspettiamo una frequenza di ~60 kHz, che supera la larghezza di banda disponibile (~15kHz).
- Segmenti con alta risoluzione di puntamento verso l'IP
- Corrispondenza con i segmenti della Big Wheel

Principio di funzionamento delle camera MicroMegas

- Regione di conversione (e di deriva) [5 mm] con basso campo elettrico (E ~ 600 V/cm)
- Rete metallica a terra
- Gap di amplificazione di 128 μm (mantenuto alla stessa altezza grazie alla tensione della rete e ai "pilastri" che la sostengono). Campo elettrico elevato (E ~ 50/60 kV/cm)
- Strisce resistive (per ridurre la probabilità di scarica)
- Strisce di lettura (per leggere il segnale di carica)

Evacuazione rapida di ioni positivi \Rightarrow capacità ad alto rate Due metodi per ricostruire la posizione del muone \Rightarrow risoluzione piatta in funzione dell'angolo (~100 µm)

Metodi di ricostruzione della posizione con le MicroMegas

Integrazione di un settore

Integrazione di un settore piccolo

Ultime misure sul settore

Traposrto sTGC

NSW-A

Status attuale dell'alta tensione

Il 2% (22/1024) delle camere non riesce a funzionare alla tensione nominale

25

AC RUN

I problemi di alta tensione delle MicroMegas

I principali problemi che incidono sulla stabilità dell'alta tensione sono stati identificati come:

- Contaminazione ionica residua di pannelli e schede dovuta alla lavorazione e alla manipolazione industriale
 migliorare le procedure di pulizia.
- Possibili effetti delle imperfezioni meccaniche della rete (mesh) di alluminio => carta vetrata per ridurre le imperfezioni
- Chiara correlazione delle correnti con l'umidità => monitorare l'umidità e aumentare il flusso

Bassa resistenza dello strato resistivo:

- Forte dipendenza dal layout (problema di progettazione)
- Chiara correlazione tra settori difettosi tensione e resistenza minima => passivazione dei bordi
- Nuova miscela del gas
- Nuovo schema per la distribuzione della tensione con 3x canali per gestire separatamente i canali deboli

Performance delle MicroMegas - Rumore

- Il rumore aumenta con il numero del canale a causa degli effetti capacitivi tra le strisce (previsto).
- Studi effettuati presso lo stand di raggi cosmici (situazione controllata) mostrano che aumentando le soglie di carica delle strisce, l'effetto sull'efficienza del singolo piano è trascurabile.

Trigger

ATLAS EXPERIMENT STORESTORES

- L'occupazione delle pad delle sTGC durante durante uno dei run di ATLAS.
- Le aree con un'occupazione significativamente più bassa possono avere diverse cause, tra cui un'alta tensione ridotta, problemi nell'elettronica del front-end e problemi nella lettura del pad.